| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sltmulneg.1 |
|- ( ph -> A e. No ) |
| 2 |
|
sltmulneg.2 |
|- ( ph -> B e. No ) |
| 3 |
|
sltmulneg.3 |
|- ( ph -> C e. No ) |
| 4 |
|
sltmulneg.4 |
|- ( ph -> C |
| 5 |
1 3
|
mulnegs2d |
|- ( ph -> ( A x.s ( -us ` C ) ) = ( -us ` ( A x.s C ) ) ) |
| 6 |
2 3
|
mulnegs2d |
|- ( ph -> ( B x.s ( -us ` C ) ) = ( -us ` ( B x.s C ) ) ) |
| 7 |
5 6
|
breq12d |
|- ( ph -> ( ( A x.s ( -us ` C ) ) ( -us ` ( A x.s C ) ) |
| 8 |
3
|
negscld |
|- ( ph -> ( -us ` C ) e. No ) |
| 9 |
|
negs0s |
|- ( -us ` 0s ) = 0s |
| 10 |
|
0sno |
|- 0s e. No |
| 11 |
10
|
a1i |
|- ( ph -> 0s e. No ) |
| 12 |
3 11
|
sltnegd |
|- ( ph -> ( C ( -us ` 0s ) |
| 13 |
4 12
|
mpbid |
|- ( ph -> ( -us ` 0s ) |
| 14 |
9 13
|
eqbrtrrid |
|- ( ph -> 0s |
| 15 |
1 2 8 14
|
sltmul1d |
|- ( ph -> ( A ( A x.s ( -us ` C ) ) |
| 16 |
2 3
|
mulscld |
|- ( ph -> ( B x.s C ) e. No ) |
| 17 |
1 3
|
mulscld |
|- ( ph -> ( A x.s C ) e. No ) |
| 18 |
16 17
|
sltnegd |
|- ( ph -> ( ( B x.s C ) ( -us ` ( A x.s C ) ) |
| 19 |
7 15 18
|
3bitr4d |
|- ( ph -> ( A ( B x.s C ) |