Metamath Proof Explorer


Theorem sltmulneg1d

Description: Multiplication of both sides of surreal less-than by a negative number. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltmulneg.1
|- ( ph -> A e. No )
sltmulneg.2
|- ( ph -> B e. No )
sltmulneg.3
|- ( ph -> C e. No )
sltmulneg.4
|- ( ph -> C 
Assertion sltmulneg1d
|- ( ph -> ( A  ( B x.s C ) 

Proof

Step Hyp Ref Expression
1 sltmulneg.1
 |-  ( ph -> A e. No )
2 sltmulneg.2
 |-  ( ph -> B e. No )
3 sltmulneg.3
 |-  ( ph -> C e. No )
4 sltmulneg.4
 |-  ( ph -> C 
5 1 3 mulnegs2d
 |-  ( ph -> ( A x.s ( -us ` C ) ) = ( -us ` ( A x.s C ) ) )
6 2 3 mulnegs2d
 |-  ( ph -> ( B x.s ( -us ` C ) ) = ( -us ` ( B x.s C ) ) )
7 5 6 breq12d
 |-  ( ph -> ( ( A x.s ( -us ` C ) )  ( -us ` ( A x.s C ) ) 
8 3 negscld
 |-  ( ph -> ( -us ` C ) e. No )
9 negs0s
 |-  ( -us ` 0s ) = 0s
10 0sno
 |-  0s e. No
11 10 a1i
 |-  ( ph -> 0s e. No )
12 3 11 sltnegd
 |-  ( ph -> ( C  ( -us ` 0s ) 
13 4 12 mpbid
 |-  ( ph -> ( -us ` 0s ) 
14 9 13 eqbrtrrid
 |-  ( ph -> 0s 
15 1 2 8 14 sltmul1d
 |-  ( ph -> ( A  ( A x.s ( -us ` C ) ) 
16 2 3 mulscld
 |-  ( ph -> ( B x.s C ) e. No )
17 1 3 mulscld
 |-  ( ph -> ( A x.s C ) e. No )
18 16 17 sltnegd
 |-  ( ph -> ( ( B x.s C )  ( -us ` ( A x.s C ) ) 
19 7 15 18 3bitr4d
 |-  ( ph -> ( A  ( B x.s C )