Step |
Hyp |
Ref |
Expression |
1 |
|
sltmulneg.1 |
|- ( ph -> A e. No ) |
2 |
|
sltmulneg.2 |
|- ( ph -> B e. No ) |
3 |
|
sltmulneg.3 |
|- ( ph -> C e. No ) |
4 |
|
sltmulneg.4 |
|- ( ph -> C |
5 |
1 3
|
mulnegs2d |
|- ( ph -> ( A x.s ( -us ` C ) ) = ( -us ` ( A x.s C ) ) ) |
6 |
2 3
|
mulnegs2d |
|- ( ph -> ( B x.s ( -us ` C ) ) = ( -us ` ( B x.s C ) ) ) |
7 |
5 6
|
breq12d |
|- ( ph -> ( ( A x.s ( -us ` C ) ) ( -us ` ( A x.s C ) ) |
8 |
3
|
negscld |
|- ( ph -> ( -us ` C ) e. No ) |
9 |
|
negs0s |
|- ( -us ` 0s ) = 0s |
10 |
|
0sno |
|- 0s e. No |
11 |
10
|
a1i |
|- ( ph -> 0s e. No ) |
12 |
3 11
|
sltnegd |
|- ( ph -> ( C ( -us ` 0s ) |
13 |
4 12
|
mpbid |
|- ( ph -> ( -us ` 0s ) |
14 |
9 13
|
eqbrtrrid |
|- ( ph -> 0s |
15 |
1 2 8 14
|
sltmul1d |
|- ( ph -> ( A ( A x.s ( -us ` C ) ) |
16 |
2 3
|
mulscld |
|- ( ph -> ( B x.s C ) e. No ) |
17 |
1 3
|
mulscld |
|- ( ph -> ( A x.s C ) e. No ) |
18 |
16 17
|
sltnegd |
|- ( ph -> ( ( B x.s C ) ( -us ` ( A x.s C ) ) |
19 |
7 15 18
|
3bitr4d |
|- ( ph -> ( A ( B x.s C ) |