Metamath Proof Explorer


Theorem sltmulneg2d

Description: Multiplication of both sides of surreal less-than by a negative number. (Contributed by Scott Fenton, 14-Mar-2025)

Ref Expression
Hypotheses sltmulneg.1
|- ( ph -> A e. No )
sltmulneg.2
|- ( ph -> B e. No )
sltmulneg.3
|- ( ph -> C e. No )
sltmulneg.4
|- ( ph -> C 
Assertion sltmulneg2d
|- ( ph -> ( A  ( C x.s B ) 

Proof

Step Hyp Ref Expression
1 sltmulneg.1
 |-  ( ph -> A e. No )
2 sltmulneg.2
 |-  ( ph -> B e. No )
3 sltmulneg.3
 |-  ( ph -> C e. No )
4 sltmulneg.4
 |-  ( ph -> C 
5 1 2 3 4 sltmulneg1d
 |-  ( ph -> ( A  ( B x.s C ) 
6 2 3 mulscomd
 |-  ( ph -> ( B x.s C ) = ( C x.s B ) )
7 1 3 mulscomd
 |-  ( ph -> ( A x.s C ) = ( C x.s A ) )
8 6 7 breq12d
 |-  ( ph -> ( ( B x.s C )  ( C x.s B ) 
9 5 8 bitrd
 |-  ( ph -> ( A  ( C x.s B )