Description: Multiplication of both sides of surreal less-than by a negative number. (Contributed by Scott Fenton, 14-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sltmulneg.1 | |- ( ph -> A e. No ) |
|
sltmulneg.2 | |- ( ph -> B e. No ) |
||
sltmulneg.3 | |- ( ph -> C e. No ) |
||
sltmulneg.4 | |- ( ph -> C |
||
Assertion | sltmulneg2d | |- ( ph -> ( A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltmulneg.1 | |- ( ph -> A e. No ) |
|
2 | sltmulneg.2 | |- ( ph -> B e. No ) |
|
3 | sltmulneg.3 | |- ( ph -> C e. No ) |
|
4 | sltmulneg.4 | |- ( ph -> C |
|
5 | 1 2 3 4 | sltmulneg1d | |- ( ph -> ( A |
6 | 2 3 | mulscomd | |- ( ph -> ( B x.s C ) = ( C x.s B ) ) |
7 | 1 3 | mulscomd | |- ( ph -> ( A x.s C ) = ( C x.s A ) ) |
8 | 6 7 | breq12d | |- ( ph -> ( ( B x.s C ) |
9 | 5 8 | bitrd | |- ( ph -> ( A |