| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negscl |
|- ( C e. No -> ( -us ` C ) e. No ) |
| 2 |
|
sltadd1 |
|- ( ( A e. No /\ B e. No /\ ( -us ` C ) e. No ) -> ( A ( A +s ( -us ` C ) ) |
| 3 |
1 2
|
syl3an3 |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A ( A +s ( -us ` C ) ) |
| 4 |
|
subsval |
|- ( ( A e. No /\ C e. No ) -> ( A -s C ) = ( A +s ( -us ` C ) ) ) |
| 5 |
4
|
3adant2 |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A -s C ) = ( A +s ( -us ` C ) ) ) |
| 6 |
|
subsval |
|- ( ( B e. No /\ C e. No ) -> ( B -s C ) = ( B +s ( -us ` C ) ) ) |
| 7 |
6
|
3adant1 |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( B -s C ) = ( B +s ( -us ` C ) ) ) |
| 8 |
5 7
|
breq12d |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A -s C ) ( A +s ( -us ` C ) ) |
| 9 |
3 8
|
bitr4d |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A ( A -s C ) |