Metamath Proof Explorer


Theorem sltsub2d

Description: Subtraction from both sides of surreal less-than. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses sltsubd.1
|- ( ph -> A e. No )
sltsubd.2
|- ( ph -> B e. No )
sltsubd.3
|- ( ph -> C e. No )
Assertion sltsub2d
|- ( ph -> ( A  ( C -s B ) 

Proof

Step Hyp Ref Expression
1 sltsubd.1
 |-  ( ph -> A e. No )
2 sltsubd.2
 |-  ( ph -> B e. No )
3 sltsubd.3
 |-  ( ph -> C e. No )
4 sltsub2
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A  ( C -s B ) 
5 1 2 3 4 syl3anc
 |-  ( ph -> ( A  ( C -s B )