Metamath Proof Explorer


Theorem sltsubadd2d

Description: Surreal less-than relationship between subtraction and addition. (Contributed by Scott Fenton, 27-Feb-2025)

Ref Expression
Hypotheses sltsubadd.1
|- ( ph -> A e. No )
sltsubadd.2
|- ( ph -> B e. No )
sltsubadd.3
|- ( ph -> C e. No )
Assertion sltsubadd2d
|- ( ph -> ( ( A -s B )  A 

Proof

Step Hyp Ref Expression
1 sltsubadd.1
 |-  ( ph -> A e. No )
2 sltsubadd.2
 |-  ( ph -> B e. No )
3 sltsubadd.3
 |-  ( ph -> C e. No )
4 1 2 3 sltsubaddd
 |-  ( ph -> ( ( A -s B )  A 
5 2 3 addscomd
 |-  ( ph -> ( B +s C ) = ( C +s B ) )
6 5 breq2d
 |-  ( ph -> ( A  A 
7 4 6 bitr4d
 |-  ( ph -> ( ( A -s B )  A