Metamath Proof Explorer


Theorem sltsubposd

Description: Subtraction of a positive number decreases the sum. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Hypotheses sltsubpos.1
|- ( ph -> A e. No )
sltsubpos.2
|- ( ph -> B e. No )
Assertion sltsubposd
|- ( ph -> ( 0s  ( B -s A ) 

Proof

Step Hyp Ref Expression
1 sltsubpos.1
 |-  ( ph -> A e. No )
2 sltsubpos.2
 |-  ( ph -> B e. No )
3 0sno
 |-  0s e. No
4 3 a1i
 |-  ( ph -> 0s e. No )
5 4 1 2 sltsub2d
 |-  ( ph -> ( 0s  ( B -s A ) 
6 subsid1
 |-  ( B e. No -> ( B -s 0s ) = B )
7 2 6 syl
 |-  ( ph -> ( B -s 0s ) = B )
8 7 breq2d
 |-  ( ph -> ( ( B -s A )  ( B -s A ) 
9 5 8 bitrd
 |-  ( ph -> ( 0s  ( B -s A )