| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fislw.1 |
|- X = ( Base ` G ) |
| 2 |
|
slwhash.3 |
|- ( ph -> X e. Fin ) |
| 3 |
|
slwhash.4 |
|- ( ph -> H e. ( P pSyl G ) ) |
| 4 |
|
slwsubg |
|- ( H e. ( P pSyl G ) -> H e. ( SubGrp ` G ) ) |
| 5 |
3 4
|
syl |
|- ( ph -> H e. ( SubGrp ` G ) ) |
| 6 |
|
subgrcl |
|- ( H e. ( SubGrp ` G ) -> G e. Grp ) |
| 7 |
5 6
|
syl |
|- ( ph -> G e. Grp ) |
| 8 |
|
slwprm |
|- ( H e. ( P pSyl G ) -> P e. Prime ) |
| 9 |
3 8
|
syl |
|- ( ph -> P e. Prime ) |
| 10 |
1
|
grpbn0 |
|- ( G e. Grp -> X =/= (/) ) |
| 11 |
7 10
|
syl |
|- ( ph -> X =/= (/) ) |
| 12 |
|
hashnncl |
|- ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
| 13 |
2 12
|
syl |
|- ( ph -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
| 14 |
11 13
|
mpbird |
|- ( ph -> ( # ` X ) e. NN ) |
| 15 |
9 14
|
pccld |
|- ( ph -> ( P pCnt ( # ` X ) ) e. NN0 ) |
| 16 |
|
pcdvds |
|- ( ( P e. Prime /\ ( # ` X ) e. NN ) -> ( P ^ ( P pCnt ( # ` X ) ) ) || ( # ` X ) ) |
| 17 |
9 14 16
|
syl2anc |
|- ( ph -> ( P ^ ( P pCnt ( # ` X ) ) ) || ( # ` X ) ) |
| 18 |
1 7 2 9 15 17
|
sylow1 |
|- ( ph -> E. k e. ( SubGrp ` G ) ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 19 |
2
|
adantr |
|- ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> X e. Fin ) |
| 20 |
5
|
adantr |
|- ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> H e. ( SubGrp ` G ) ) |
| 21 |
|
simprl |
|- ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> k e. ( SubGrp ` G ) ) |
| 22 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 23 |
|
eqid |
|- ( G |`s H ) = ( G |`s H ) |
| 24 |
23
|
slwpgp |
|- ( H e. ( P pSyl G ) -> P pGrp ( G |`s H ) ) |
| 25 |
3 24
|
syl |
|- ( ph -> P pGrp ( G |`s H ) ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> P pGrp ( G |`s H ) ) |
| 27 |
|
simprr |
|- ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 28 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
| 29 |
1 19 20 21 22 26 27 28
|
sylow2b |
|- ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> E. g e. X H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) |
| 30 |
|
simprr |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) |
| 31 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> H e. ( P pSyl G ) ) |
| 32 |
31 8
|
syl |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> P e. Prime ) |
| 33 |
15
|
ad2antrr |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( P pCnt ( # ` X ) ) e. NN0 ) |
| 34 |
21
|
adantr |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> k e. ( SubGrp ` G ) ) |
| 35 |
|
simprl |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> g e. X ) |
| 36 |
|
eqid |
|- ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) = ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) |
| 37 |
1 22 28 36
|
conjsubg |
|- ( ( k e. ( SubGrp ` G ) /\ g e. X ) -> ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) e. ( SubGrp ` G ) ) |
| 38 |
34 35 37
|
syl2anc |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) e. ( SubGrp ` G ) ) |
| 39 |
|
eqid |
|- ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) = ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) |
| 40 |
39
|
subgbas |
|- ( ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) e. ( SubGrp ` G ) -> ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) = ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) |
| 41 |
38 40
|
syl |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) = ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) |
| 42 |
41
|
fveq2d |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( # ` ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) = ( # ` ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) ) |
| 43 |
1 22 28 36
|
conjsubgen |
|- ( ( k e. ( SubGrp ` G ) /\ g e. X ) -> k ~~ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) |
| 44 |
34 35 43
|
syl2anc |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> k ~~ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) |
| 45 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> X e. Fin ) |
| 46 |
1
|
subgss |
|- ( k e. ( SubGrp ` G ) -> k C_ X ) |
| 47 |
34 46
|
syl |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> k C_ X ) |
| 48 |
45 47
|
ssfid |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> k e. Fin ) |
| 49 |
1
|
subgss |
|- ( ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) e. ( SubGrp ` G ) -> ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) C_ X ) |
| 50 |
38 49
|
syl |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) C_ X ) |
| 51 |
45 50
|
ssfid |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) e. Fin ) |
| 52 |
|
hashen |
|- ( ( k e. Fin /\ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) e. Fin ) -> ( ( # ` k ) = ( # ` ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) <-> k ~~ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) |
| 53 |
48 51 52
|
syl2anc |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( ( # ` k ) = ( # ` ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) <-> k ~~ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) |
| 54 |
44 53
|
mpbird |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( # ` k ) = ( # ` ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) |
| 55 |
|
simplrr |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 56 |
54 55
|
eqtr3d |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( # ` ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 57 |
42 56
|
eqtr3d |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( # ` ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 58 |
|
oveq2 |
|- ( n = ( P pCnt ( # ` X ) ) -> ( P ^ n ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 59 |
58
|
rspceeqv |
|- ( ( ( P pCnt ( # ` X ) ) e. NN0 /\ ( # ` ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) -> E. n e. NN0 ( # ` ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) = ( P ^ n ) ) |
| 60 |
33 57 59
|
syl2anc |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> E. n e. NN0 ( # ` ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) = ( P ^ n ) ) |
| 61 |
39
|
subggrp |
|- ( ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) e. ( SubGrp ` G ) -> ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) e. Grp ) |
| 62 |
38 61
|
syl |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) e. Grp ) |
| 63 |
41 51
|
eqeltrrd |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) e. Fin ) |
| 64 |
|
eqid |
|- ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) = ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) |
| 65 |
64
|
pgpfi |
|- ( ( ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) e. Grp /\ ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) e. Fin ) -> ( P pGrp ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) <-> ( P e. Prime /\ E. n e. NN0 ( # ` ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) = ( P ^ n ) ) ) ) |
| 66 |
62 63 65
|
syl2anc |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( P pGrp ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) <-> ( P e. Prime /\ E. n e. NN0 ( # ` ( Base ` ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) ) = ( P ^ n ) ) ) ) |
| 67 |
32 60 66
|
mpbir2and |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> P pGrp ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) |
| 68 |
39
|
slwispgp |
|- ( ( H e. ( P pSyl G ) /\ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) e. ( SubGrp ` G ) ) -> ( ( H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) /\ P pGrp ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) <-> H = ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) |
| 69 |
31 38 68
|
syl2anc |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( ( H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) /\ P pGrp ( G |`s ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) <-> H = ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) |
| 70 |
30 67 69
|
mpbi2and |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> H = ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) |
| 71 |
70
|
fveq2d |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( # ` H ) = ( # ` ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) |
| 72 |
71 56
|
eqtrd |
|- ( ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) /\ ( g e. X /\ H C_ ran ( x e. k |-> ( ( g ( +g ` G ) x ) ( -g ` G ) g ) ) ) ) -> ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 73 |
29 72
|
rexlimddv |
|- ( ( ph /\ ( k e. ( SubGrp ` G ) /\ ( # ` k ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) ) -> ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
| 74 |
18 73
|
rexlimddv |
|- ( ph -> ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |