Step |
Hyp |
Ref |
Expression |
1 |
|
slwispgp.1 |
|- S = ( G |`s K ) |
2 |
|
isslw |
|- ( H e. ( P pSyl G ) <-> ( P e. Prime /\ H e. ( SubGrp ` G ) /\ A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) ) |
3 |
2
|
simp3bi |
|- ( H e. ( P pSyl G ) -> A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) ) |
4 |
|
sseq2 |
|- ( k = K -> ( H C_ k <-> H C_ K ) ) |
5 |
|
oveq2 |
|- ( k = K -> ( G |`s k ) = ( G |`s K ) ) |
6 |
5 1
|
eqtr4di |
|- ( k = K -> ( G |`s k ) = S ) |
7 |
6
|
breq2d |
|- ( k = K -> ( P pGrp ( G |`s k ) <-> P pGrp S ) ) |
8 |
4 7
|
anbi12d |
|- ( k = K -> ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> ( H C_ K /\ P pGrp S ) ) ) |
9 |
|
eqeq2 |
|- ( k = K -> ( H = k <-> H = K ) ) |
10 |
8 9
|
bibi12d |
|- ( k = K -> ( ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) <-> ( ( H C_ K /\ P pGrp S ) <-> H = K ) ) ) |
11 |
10
|
rspccva |
|- ( ( A. k e. ( SubGrp ` G ) ( ( H C_ k /\ P pGrp ( G |`s k ) ) <-> H = k ) /\ K e. ( SubGrp ` G ) ) -> ( ( H C_ K /\ P pGrp S ) <-> H = K ) ) |
12 |
3 11
|
sylan |
|- ( ( H e. ( P pSyl G ) /\ K e. ( SubGrp ` G ) ) -> ( ( H C_ K /\ P pGrp S ) <-> H = K ) ) |