Step |
Hyp |
Ref |
Expression |
1 |
|
slwn0.1 |
|- X = ( Base ` G ) |
2 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
3 |
2
|
0subg |
|- ( G e. Grp -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) |
4 |
3
|
3ad2ant1 |
|- ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) |
5 |
|
simp2 |
|- ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) -> X e. Fin ) |
6 |
2
|
pgp0 |
|- ( ( G e. Grp /\ P e. Prime ) -> P pGrp ( G |`s { ( 0g ` G ) } ) ) |
7 |
6
|
3adant2 |
|- ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) -> P pGrp ( G |`s { ( 0g ` G ) } ) ) |
8 |
|
eqid |
|- ( G |`s { ( 0g ` G ) } ) = ( G |`s { ( 0g ` G ) } ) |
9 |
|
eqid |
|- ( x e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ { ( 0g ` G ) } C_ y ) } |-> ( # ` x ) ) = ( x e. { y e. ( SubGrp ` G ) | ( P pGrp ( G |`s y ) /\ { ( 0g ` G ) } C_ y ) } |-> ( # ` x ) ) |
10 |
1 8 9
|
pgpssslw |
|- ( ( { ( 0g ` G ) } e. ( SubGrp ` G ) /\ X e. Fin /\ P pGrp ( G |`s { ( 0g ` G ) } ) ) -> E. z e. ( P pSyl G ) { ( 0g ` G ) } C_ z ) |
11 |
4 5 7 10
|
syl3anc |
|- ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) -> E. z e. ( P pSyl G ) { ( 0g ` G ) } C_ z ) |
12 |
|
rexn0 |
|- ( E. z e. ( P pSyl G ) { ( 0g ` G ) } C_ z -> ( P pSyl G ) =/= (/) ) |
13 |
11 12
|
syl |
|- ( ( G e. Grp /\ X e. Fin /\ P e. Prime ) -> ( P pSyl G ) =/= (/) ) |