| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							smadiadet.a | 
							 |-  A = ( N Mat R )  | 
						
						
							| 2 | 
							
								
							 | 
							smadiadet.b | 
							 |-  B = ( Base ` A )  | 
						
						
							| 3 | 
							
								
							 | 
							smadiadet.r | 
							 |-  R e. CRing  | 
						
						
							| 4 | 
							
								
							 | 
							smadiadet.d | 
							 |-  D = ( N maDet R )  | 
						
						
							| 5 | 
							
								
							 | 
							smadiadet.h | 
							 |-  E = ( ( N \ { K } ) maDet R ) | 
						
						
							| 6 | 
							
								
							 | 
							smadiadetg.x | 
							 |-  .x. = ( .r ` R )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` R ) = ( Base ` R )  | 
						
						
							| 8 | 
							
								3
							 | 
							a1i | 
							 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> R e. CRing )  | 
						
						
							| 9 | 
							
								
							 | 
							crngring | 
							 |-  ( R e. CRing -> R e. Ring )  | 
						
						
							| 10 | 
							
								3 9
							 | 
							mp1i | 
							 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> R e. Ring )  | 
						
						
							| 11 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> M e. B )  | 
						
						
							| 12 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> S e. ( Base ` R ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> K e. N )  | 
						
						
							| 14 | 
							
								1 2
							 | 
							marrepcl | 
							 |-  ( ( ( R e. Ring /\ M e. B /\ S e. ( Base ` R ) ) /\ ( K e. N /\ K e. N ) ) -> ( K ( M ( N matRRep R ) S ) K ) e. B )  | 
						
						
							| 15 | 
							
								10 11 12 13 13 14
							 | 
							syl32anc | 
							 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( K ( M ( N matRRep R ) S ) K ) e. B )  | 
						
						
							| 16 | 
							
								1 2
							 | 
							minmar1cl | 
							 |-  ( ( ( R e. Ring /\ M e. B ) /\ ( K e. N /\ K e. N ) ) -> ( K ( ( N minMatR1 R ) ` M ) K ) e. B )  | 
						
						
							| 17 | 
							
								10 11 13 13 16
							 | 
							syl22anc | 
							 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( K ( ( N minMatR1 R ) ` M ) K ) e. B )  | 
						
						
							| 18 | 
							
								1 2 3 4 5 6
							 | 
							smadiadetglem2 | 
							 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( ( K ( M ( N matRRep R ) S ) K ) |` ( { K } X. N ) ) = ( ( ( { K } X. N ) X. { S } ) oF .x. ( ( K ( ( N minMatR1 R ) ` M ) K ) |` ( { K } X. N ) ) ) ) | 
						
						
							| 19 | 
							
								1 2 3 4 5
							 | 
							smadiadetglem1 | 
							 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( ( K ( M ( N matRRep R ) S ) K ) |` ( ( N \ { K } ) X. N ) ) = ( ( K ( ( N minMatR1 R ) ` M ) K ) |` ( ( N \ { K } ) X. N ) ) ) | 
						
						
							| 20 | 
							
								4 1 2 7 6 8 15 12 17 13 18 19
							 | 
							mdetrsca | 
							 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( D ` ( K ( M ( N matRRep R ) S ) K ) ) = ( S .x. ( D ` ( K ( ( N minMatR1 R ) ` M ) K ) ) ) )  | 
						
						
							| 21 | 
							
								1 2 3 4 5
							 | 
							smadiadet | 
							 |-  ( ( M e. B /\ K e. N ) -> ( E ` ( K ( ( N subMat R ) ` M ) K ) ) = ( D ` ( K ( ( N minMatR1 R ) ` M ) K ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							3adant3 | 
							 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( E ` ( K ( ( N subMat R ) ` M ) K ) ) = ( D ` ( K ( ( N minMatR1 R ) ` M ) K ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							eqcomd | 
							 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( D ` ( K ( ( N minMatR1 R ) ` M ) K ) ) = ( E ` ( K ( ( N subMat R ) ` M ) K ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							oveq2d | 
							 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( S .x. ( D ` ( K ( ( N minMatR1 R ) ` M ) K ) ) ) = ( S .x. ( E ` ( K ( ( N subMat R ) ` M ) K ) ) ) )  | 
						
						
							| 25 | 
							
								20 24
							 | 
							eqtrd | 
							 |-  ( ( M e. B /\ K e. N /\ S e. ( Base ` R ) ) -> ( D ` ( K ( M ( N matRRep R ) S ) K ) ) = ( S .x. ( E ` ( K ( ( N subMat R ) ` M ) K ) ) ) )  |