Metamath Proof Explorer


Theorem smadiadetg0

Description: Lemma for smadiadetr : version of smadiadetg with all hypotheses defining class variables removed, i.e. all class variables defined in the hypotheses replaced in the theorem by their definition. (Contributed by AV, 15-Feb-2019)

Ref Expression
Hypothesis smadiadetg0.r
|- R e. CRing
Assertion smadiadetg0
|- ( ( M e. ( Base ` ( N Mat R ) ) /\ K e. N /\ S e. ( Base ` R ) ) -> ( ( N maDet R ) ` ( K ( M ( N matRRep R ) S ) K ) ) = ( S ( .r ` R ) ( ( ( N \ { K } ) maDet R ) ` ( K ( ( N subMat R ) ` M ) K ) ) ) )

Proof

Step Hyp Ref Expression
1 smadiadetg0.r
 |-  R e. CRing
2 eqid
 |-  ( N Mat R ) = ( N Mat R )
3 eqid
 |-  ( Base ` ( N Mat R ) ) = ( Base ` ( N Mat R ) )
4 eqid
 |-  ( N maDet R ) = ( N maDet R )
5 eqid
 |-  ( ( N \ { K } ) maDet R ) = ( ( N \ { K } ) maDet R )
6 eqid
 |-  ( .r ` R ) = ( .r ` R )
7 2 3 1 4 5 6 smadiadetg
 |-  ( ( M e. ( Base ` ( N Mat R ) ) /\ K e. N /\ S e. ( Base ` R ) ) -> ( ( N maDet R ) ` ( K ( M ( N matRRep R ) S ) K ) ) = ( S ( .r ` R ) ( ( ( N \ { K } ) maDet R ) ` ( K ( ( N subMat R ) ` M ) K ) ) ) )