Description: Lemma 2 for smadiadet : The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to itself. (Contributed by AV, 31-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | marep01ma.a | |- A = ( N Mat R )  | 
					|
| marep01ma.b | |- B = ( Base ` A )  | 
					||
| marep01ma.r | |- R e. CRing  | 
					||
| marep01ma.0 | |- .0. = ( 0g ` R )  | 
					||
| marep01ma.1 | |- .1. = ( 1r ` R )  | 
					||
| smadiadetlem.p | |- P = ( Base ` ( SymGrp ` N ) )  | 
					||
| smadiadetlem.g | |- G = ( mulGrp ` R )  | 
					||
| madetminlem.y | |- Y = ( ZRHom ` R )  | 
					||
| madetminlem.s | |- S = ( pmSgn ` N )  | 
					||
| madetminlem.t | |- .x. = ( .r ` R )  | 
					||
| Assertion | smadiadetlem2 | |- ( ( M e. B /\ K e. N ) -> ( R gsum ( p e. ( P \ { q e. P | ( q ` K ) = K } ) |-> ( ( ( Y o. S ) ` p ) .x. ( G gsum ( n e. N |-> ( n ( i e. N , j e. N |-> if ( i = K , if ( j = K , .1. , .0. ) , ( i M j ) ) ) ( p ` n ) ) ) ) ) ) ) = .0. ) | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | marep01ma.a | |- A = ( N Mat R )  | 
						|
| 2 | marep01ma.b | |- B = ( Base ` A )  | 
						|
| 3 | marep01ma.r | |- R e. CRing  | 
						|
| 4 | marep01ma.0 | |- .0. = ( 0g ` R )  | 
						|
| 5 | marep01ma.1 | |- .1. = ( 1r ` R )  | 
						|
| 6 | smadiadetlem.p | |- P = ( Base ` ( SymGrp ` N ) )  | 
						|
| 7 | smadiadetlem.g | |- G = ( mulGrp ` R )  | 
						|
| 8 | madetminlem.y | |- Y = ( ZRHom ` R )  | 
						|
| 9 | madetminlem.s | |- S = ( pmSgn ` N )  | 
						|
| 10 | madetminlem.t | |- .x. = ( .r ` R )  | 
						|
| 11 | 1 2 3 4 5 6 7 8 9 10 | smadiadetlem1a |  |-  ( ( M e. B /\ K e. N /\ K e. N ) -> ( R gsum ( p e. ( P \ { q e. P | ( q ` K ) = K } ) |-> ( ( ( Y o. S ) ` p ) .x. ( G gsum ( n e. N |-> ( n ( i e. N , j e. N |-> if ( i = K , if ( j = K , .1. , .0. ) , ( i M j ) ) ) ( p ` n ) ) ) ) ) ) ) = .0. ) | 
						
| 12 | 11 | 3anidm23 |  |-  ( ( M e. B /\ K e. N ) -> ( R gsum ( p e. ( P \ { q e. P | ( q ` K ) = K } ) |-> ( ( ( Y o. S ) ` p ) .x. ( G gsum ( n e. N |-> ( n ( i e. N , j e. N |-> if ( i = K , if ( j = K , .1. , .0. ) , ( i M j ) ) ) ( p ` n ) ) ) ) ) ) ) = .0. ) |