| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3anass |
|- ( ( M e. ( Base ` ( N Mat R ) ) /\ K e. N /\ S e. ( Base ` R ) ) <-> ( M e. ( Base ` ( N Mat R ) ) /\ ( K e. N /\ S e. ( Base ` R ) ) ) ) |
| 2 |
|
oveq2 |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( N Mat R ) = ( N Mat if ( R e. CRing , R , CCfld ) ) ) |
| 3 |
2
|
fveq2d |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( Base ` ( N Mat R ) ) = ( Base ` ( N Mat if ( R e. CRing , R , CCfld ) ) ) ) |
| 4 |
3
|
eleq2d |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( M e. ( Base ` ( N Mat R ) ) <-> M e. ( Base ` ( N Mat if ( R e. CRing , R , CCfld ) ) ) ) ) |
| 5 |
|
fveq2 |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( Base ` R ) = ( Base ` if ( R e. CRing , R , CCfld ) ) ) |
| 6 |
5
|
eleq2d |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( S e. ( Base ` R ) <-> S e. ( Base ` if ( R e. CRing , R , CCfld ) ) ) ) |
| 7 |
4 6
|
3anbi13d |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( ( M e. ( Base ` ( N Mat R ) ) /\ K e. N /\ S e. ( Base ` R ) ) <-> ( M e. ( Base ` ( N Mat if ( R e. CRing , R , CCfld ) ) ) /\ K e. N /\ S e. ( Base ` if ( R e. CRing , R , CCfld ) ) ) ) ) |
| 8 |
1 7
|
bitr3id |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( ( M e. ( Base ` ( N Mat R ) ) /\ ( K e. N /\ S e. ( Base ` R ) ) ) <-> ( M e. ( Base ` ( N Mat if ( R e. CRing , R , CCfld ) ) ) /\ K e. N /\ S e. ( Base ` if ( R e. CRing , R , CCfld ) ) ) ) ) |
| 9 |
|
oveq2 |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( N maDet R ) = ( N maDet if ( R e. CRing , R , CCfld ) ) ) |
| 10 |
|
oveq2 |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( N matRRep R ) = ( N matRRep if ( R e. CRing , R , CCfld ) ) ) |
| 11 |
10
|
oveqd |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( M ( N matRRep R ) S ) = ( M ( N matRRep if ( R e. CRing , R , CCfld ) ) S ) ) |
| 12 |
11
|
oveqd |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( K ( M ( N matRRep R ) S ) K ) = ( K ( M ( N matRRep if ( R e. CRing , R , CCfld ) ) S ) K ) ) |
| 13 |
9 12
|
fveq12d |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( ( N maDet R ) ` ( K ( M ( N matRRep R ) S ) K ) ) = ( ( N maDet if ( R e. CRing , R , CCfld ) ) ` ( K ( M ( N matRRep if ( R e. CRing , R , CCfld ) ) S ) K ) ) ) |
| 14 |
|
fveq2 |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( .r ` R ) = ( .r ` if ( R e. CRing , R , CCfld ) ) ) |
| 15 |
|
eqidd |
|- ( R = if ( R e. CRing , R , CCfld ) -> S = S ) |
| 16 |
|
oveq2 |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( ( N \ { K } ) maDet R ) = ( ( N \ { K } ) maDet if ( R e. CRing , R , CCfld ) ) ) |
| 17 |
|
oveq2 |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( N subMat R ) = ( N subMat if ( R e. CRing , R , CCfld ) ) ) |
| 18 |
17
|
fveq1d |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( ( N subMat R ) ` M ) = ( ( N subMat if ( R e. CRing , R , CCfld ) ) ` M ) ) |
| 19 |
18
|
oveqd |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( K ( ( N subMat R ) ` M ) K ) = ( K ( ( N subMat if ( R e. CRing , R , CCfld ) ) ` M ) K ) ) |
| 20 |
16 19
|
fveq12d |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( ( ( N \ { K } ) maDet R ) ` ( K ( ( N subMat R ) ` M ) K ) ) = ( ( ( N \ { K } ) maDet if ( R e. CRing , R , CCfld ) ) ` ( K ( ( N subMat if ( R e. CRing , R , CCfld ) ) ` M ) K ) ) ) |
| 21 |
14 15 20
|
oveq123d |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( S ( .r ` R ) ( ( ( N \ { K } ) maDet R ) ` ( K ( ( N subMat R ) ` M ) K ) ) ) = ( S ( .r ` if ( R e. CRing , R , CCfld ) ) ( ( ( N \ { K } ) maDet if ( R e. CRing , R , CCfld ) ) ` ( K ( ( N subMat if ( R e. CRing , R , CCfld ) ) ` M ) K ) ) ) ) |
| 22 |
13 21
|
eqeq12d |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( ( ( N maDet R ) ` ( K ( M ( N matRRep R ) S ) K ) ) = ( S ( .r ` R ) ( ( ( N \ { K } ) maDet R ) ` ( K ( ( N subMat R ) ` M ) K ) ) ) <-> ( ( N maDet if ( R e. CRing , R , CCfld ) ) ` ( K ( M ( N matRRep if ( R e. CRing , R , CCfld ) ) S ) K ) ) = ( S ( .r ` if ( R e. CRing , R , CCfld ) ) ( ( ( N \ { K } ) maDet if ( R e. CRing , R , CCfld ) ) ` ( K ( ( N subMat if ( R e. CRing , R , CCfld ) ) ` M ) K ) ) ) ) ) |
| 23 |
8 22
|
imbi12d |
|- ( R = if ( R e. CRing , R , CCfld ) -> ( ( ( M e. ( Base ` ( N Mat R ) ) /\ ( K e. N /\ S e. ( Base ` R ) ) ) -> ( ( N maDet R ) ` ( K ( M ( N matRRep R ) S ) K ) ) = ( S ( .r ` R ) ( ( ( N \ { K } ) maDet R ) ` ( K ( ( N subMat R ) ` M ) K ) ) ) ) <-> ( ( M e. ( Base ` ( N Mat if ( R e. CRing , R , CCfld ) ) ) /\ K e. N /\ S e. ( Base ` if ( R e. CRing , R , CCfld ) ) ) -> ( ( N maDet if ( R e. CRing , R , CCfld ) ) ` ( K ( M ( N matRRep if ( R e. CRing , R , CCfld ) ) S ) K ) ) = ( S ( .r ` if ( R e. CRing , R , CCfld ) ) ( ( ( N \ { K } ) maDet if ( R e. CRing , R , CCfld ) ) ` ( K ( ( N subMat if ( R e. CRing , R , CCfld ) ) ` M ) K ) ) ) ) ) ) |
| 24 |
|
cncrng |
|- CCfld e. CRing |
| 25 |
24
|
elimel |
|- if ( R e. CRing , R , CCfld ) e. CRing |
| 26 |
25
|
smadiadetg0 |
|- ( ( M e. ( Base ` ( N Mat if ( R e. CRing , R , CCfld ) ) ) /\ K e. N /\ S e. ( Base ` if ( R e. CRing , R , CCfld ) ) ) -> ( ( N maDet if ( R e. CRing , R , CCfld ) ) ` ( K ( M ( N matRRep if ( R e. CRing , R , CCfld ) ) S ) K ) ) = ( S ( .r ` if ( R e. CRing , R , CCfld ) ) ( ( ( N \ { K } ) maDet if ( R e. CRing , R , CCfld ) ) ` ( K ( ( N subMat if ( R e. CRing , R , CCfld ) ) ` M ) K ) ) ) ) |
| 27 |
23 26
|
dedth |
|- ( R e. CRing -> ( ( M e. ( Base ` ( N Mat R ) ) /\ ( K e. N /\ S e. ( Base ` R ) ) ) -> ( ( N maDet R ) ` ( K ( M ( N matRRep R ) S ) K ) ) = ( S ( .r ` R ) ( ( ( N \ { K } ) maDet R ) ` ( K ( ( N subMat R ) ` M ) K ) ) ) ) ) |
| 28 |
27
|
impl |
|- ( ( ( R e. CRing /\ M e. ( Base ` ( N Mat R ) ) ) /\ ( K e. N /\ S e. ( Base ` R ) ) ) -> ( ( N maDet R ) ` ( K ( M ( N matRRep R ) S ) K ) ) = ( S ( .r ` R ) ( ( ( N \ { K } ) maDet R ) ` ( K ( ( N subMat R ) ` M ) K ) ) ) ) |