Metamath Proof Explorer


Theorem smgrpassOLD

Description: Obsolete version of sgrpass as of 3-Feb-2020. A semigroup is associative. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis smgrpassOLD.1
|- X = dom dom G
Assertion smgrpassOLD
|- ( G e. SemiGrp -> A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) )

Proof

Step Hyp Ref Expression
1 smgrpassOLD.1
 |-  X = dom dom G
2 1 issmgrpOLD
 |-  ( G e. SemiGrp -> ( G e. SemiGrp <-> ( G : ( X X. X ) --> X /\ A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) ) ) )
3 simpr
 |-  ( ( G : ( X X. X ) --> X /\ A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) ) -> A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) )
4 2 3 syl6bi
 |-  ( G e. SemiGrp -> ( G e. SemiGrp -> A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) ) )
5 4 pm2.43i
 |-  ( G e. SemiGrp -> A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) )