Metamath Proof Explorer


Theorem smgrpismgmOLD

Description: Obsolete version of sgrpmgm as of 3-Feb-2020. A semigroup is a magma. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion smgrpismgmOLD
|- ( G e. SemiGrp -> G e. Magma )

Proof

Step Hyp Ref Expression
1 elin
 |-  ( G e. ( Magma i^i Ass ) <-> ( G e. Magma /\ G e. Ass ) )
2 1 simplbi
 |-  ( G e. ( Magma i^i Ass ) -> G e. Magma )
3 df-sgrOLD
 |-  SemiGrp = ( Magma i^i Ass )
4 2 3 eleq2s
 |-  ( G e. SemiGrp -> G e. Magma )