Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | smgrpmgm.1 | |- X = dom dom G |
|
Assertion | smgrpmgm | |- ( G e. SemiGrp -> G : ( X X. X ) --> X ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smgrpmgm.1 | |- X = dom dom G |
|
2 | 1 | issmgrpOLD | |- ( G e. SemiGrp -> ( G e. SemiGrp <-> ( G : ( X X. X ) --> X /\ A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) ) ) ) |
3 | simpl | |- ( ( G : ( X X. X ) --> X /\ A. x e. X A. y e. X A. z e. X ( ( x G y ) G z ) = ( x G ( y G z ) ) ) -> G : ( X X. X ) --> X ) |
|
4 | 2 3 | syl6bi | |- ( G e. SemiGrp -> ( G e. SemiGrp -> G : ( X X. X ) --> X ) ) |
5 | 4 | pm2.43i | |- ( G e. SemiGrp -> G : ( X X. X ) --> X ) |