| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smndex1ibas.m |  |-  M = ( EndoFMnd ` NN0 ) | 
						
							| 2 |  | smndex1ibas.n |  |-  N e. NN | 
						
							| 3 |  | smndex1ibas.i |  |-  I = ( x e. NN0 |-> ( x mod N ) ) | 
						
							| 4 |  | smndex1ibas.g |  |-  G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) | 
						
							| 5 |  | smndex1mgm.b |  |-  B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) | 
						
							| 6 |  | smndex1mgm.s |  |-  S = ( M |`s B ) | 
						
							| 7 | 1 2 3 4 5 | smndex1basss |  |-  B C_ ( Base ` M ) | 
						
							| 8 |  | dfss |  |-  ( B C_ ( Base ` M ) <-> B = ( B i^i ( Base ` M ) ) ) | 
						
							| 9 | 7 8 | mpbi |  |-  B = ( B i^i ( Base ` M ) ) | 
						
							| 10 |  | snex |  |-  { I } e. _V | 
						
							| 11 |  | ovex |  |-  ( 0 ..^ N ) e. _V | 
						
							| 12 |  | snex |  |-  { ( G ` n ) } e. _V | 
						
							| 13 | 11 12 | iunex |  |-  U_ n e. ( 0 ..^ N ) { ( G ` n ) } e. _V | 
						
							| 14 | 10 13 | unex |  |-  ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) e. _V | 
						
							| 15 | 5 14 | eqeltri |  |-  B e. _V | 
						
							| 16 |  | eqid |  |-  ( Base ` M ) = ( Base ` M ) | 
						
							| 17 | 6 16 | ressbas |  |-  ( B e. _V -> ( B i^i ( Base ` M ) ) = ( Base ` S ) ) | 
						
							| 18 | 15 17 | ax-mp |  |-  ( B i^i ( Base ` M ) ) = ( Base ` S ) | 
						
							| 19 | 9 18 | eqtr2i |  |-  ( Base ` S ) = B |