| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smndex1ibas.m |  |-  M = ( EndoFMnd ` NN0 ) | 
						
							| 2 |  | smndex1ibas.n |  |-  N e. NN | 
						
							| 3 |  | smndex1ibas.i |  |-  I = ( x e. NN0 |-> ( x mod N ) ) | 
						
							| 4 |  | smndex1ibas.g |  |-  G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) | 
						
							| 5 |  | elfzonn0 |  |-  ( K e. ( 0 ..^ N ) -> K e. NN0 ) | 
						
							| 6 | 5 | adantr |  |-  ( ( K e. ( 0 ..^ N ) /\ x e. NN0 ) -> K e. NN0 ) | 
						
							| 7 | 6 | ralrimiva |  |-  ( K e. ( 0 ..^ N ) -> A. x e. NN0 K e. NN0 ) | 
						
							| 8 |  | eqid |  |-  ( x e. NN0 |-> K ) = ( x e. NN0 |-> K ) | 
						
							| 9 | 8 | fmpt |  |-  ( A. x e. NN0 K e. NN0 <-> ( x e. NN0 |-> K ) : NN0 --> NN0 ) | 
						
							| 10 | 7 9 | sylib |  |-  ( K e. ( 0 ..^ N ) -> ( x e. NN0 |-> K ) : NN0 --> NN0 ) | 
						
							| 11 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 12 | 11 11 | elmap |  |-  ( ( x e. NN0 |-> K ) e. ( NN0 ^m NN0 ) <-> ( x e. NN0 |-> K ) : NN0 --> NN0 ) | 
						
							| 13 | 10 12 | sylibr |  |-  ( K e. ( 0 ..^ N ) -> ( x e. NN0 |-> K ) e. ( NN0 ^m NN0 ) ) | 
						
							| 14 | 4 | a1i |  |-  ( K e. ( 0 ..^ N ) -> G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) ) | 
						
							| 15 |  | id |  |-  ( n = K -> n = K ) | 
						
							| 16 | 15 | mpteq2dv |  |-  ( n = K -> ( x e. NN0 |-> n ) = ( x e. NN0 |-> K ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( K e. ( 0 ..^ N ) /\ n = K ) -> ( x e. NN0 |-> n ) = ( x e. NN0 |-> K ) ) | 
						
							| 18 |  | id |  |-  ( K e. ( 0 ..^ N ) -> K e. ( 0 ..^ N ) ) | 
						
							| 19 | 11 | mptex |  |-  ( x e. NN0 |-> K ) e. _V | 
						
							| 20 | 19 | a1i |  |-  ( K e. ( 0 ..^ N ) -> ( x e. NN0 |-> K ) e. _V ) | 
						
							| 21 | 14 17 18 20 | fvmptd |  |-  ( K e. ( 0 ..^ N ) -> ( G ` K ) = ( x e. NN0 |-> K ) ) | 
						
							| 22 |  | eqid |  |-  ( Base ` M ) = ( Base ` M ) | 
						
							| 23 | 1 22 | efmndbas |  |-  ( Base ` M ) = ( NN0 ^m NN0 ) | 
						
							| 24 | 23 | a1i |  |-  ( K e. ( 0 ..^ N ) -> ( Base ` M ) = ( NN0 ^m NN0 ) ) | 
						
							| 25 | 13 21 24 | 3eltr4d |  |-  ( K e. ( 0 ..^ N ) -> ( G ` K ) e. ( Base ` M ) ) |