| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smndex1ibas.m |
|- M = ( EndoFMnd ` NN0 ) |
| 2 |
|
smndex1ibas.n |
|- N e. NN |
| 3 |
|
smndex1ibas.i |
|- I = ( x e. NN0 |-> ( x mod N ) ) |
| 4 |
|
smndex1ibas.g |
|- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
| 5 |
|
smndex1mgm.b |
|- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
| 6 |
|
smndex1mgm.s |
|- S = ( M |`s B ) |
| 7 |
|
nn0ex |
|- NN0 e. _V |
| 8 |
7
|
mptex |
|- ( x e. NN0 |-> ( x mod N ) ) e. _V |
| 9 |
3 8
|
eqeltri |
|- I e. _V |
| 10 |
9
|
snid |
|- I e. { I } |
| 11 |
|
elun1 |
|- ( I e. { I } -> I e. ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) ) |
| 12 |
10 11
|
ax-mp |
|- I e. ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
| 13 |
12 5
|
eleqtrri |
|- I e. B |
| 14 |
1 2 3 4 5 6
|
smndex1bas |
|- ( Base ` S ) = B |
| 15 |
14
|
eqcomi |
|- B = ( Base ` S ) |
| 16 |
15
|
a1i |
|- ( I e. B -> B = ( Base ` S ) ) |
| 17 |
|
snex |
|- { I } e. _V |
| 18 |
|
ovex |
|- ( 0 ..^ N ) e. _V |
| 19 |
|
snex |
|- { ( G ` n ) } e. _V |
| 20 |
18 19
|
iunex |
|- U_ n e. ( 0 ..^ N ) { ( G ` n ) } e. _V |
| 21 |
17 20
|
unex |
|- ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) e. _V |
| 22 |
5 21
|
eqeltri |
|- B e. _V |
| 23 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
| 24 |
6 23
|
ressplusg |
|- ( B e. _V -> ( +g ` M ) = ( +g ` S ) ) |
| 25 |
22 24
|
mp1i |
|- ( I e. B -> ( +g ` M ) = ( +g ` S ) ) |
| 26 |
|
id |
|- ( I e. B -> I e. B ) |
| 27 |
1 2 3
|
smndex1ibas |
|- I e. ( Base ` M ) |
| 28 |
27
|
a1i |
|- ( I e. B -> I e. ( Base ` M ) ) |
| 29 |
1 2 3 4 5
|
smndex1basss |
|- B C_ ( Base ` M ) |
| 30 |
29
|
sseli |
|- ( a e. B -> a e. ( Base ` M ) ) |
| 31 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
| 32 |
1 31 23
|
efmndov |
|- ( ( I e. ( Base ` M ) /\ a e. ( Base ` M ) ) -> ( I ( +g ` M ) a ) = ( I o. a ) ) |
| 33 |
28 30 32
|
syl2an |
|- ( ( I e. B /\ a e. B ) -> ( I ( +g ` M ) a ) = ( I o. a ) ) |
| 34 |
1 2 3 4 5 6
|
smndex1mndlem |
|- ( a e. B -> ( ( I o. a ) = a /\ ( a o. I ) = a ) ) |
| 35 |
34
|
simpld |
|- ( a e. B -> ( I o. a ) = a ) |
| 36 |
35
|
adantl |
|- ( ( I e. B /\ a e. B ) -> ( I o. a ) = a ) |
| 37 |
33 36
|
eqtrd |
|- ( ( I e. B /\ a e. B ) -> ( I ( +g ` M ) a ) = a ) |
| 38 |
1 31 23
|
efmndov |
|- ( ( a e. ( Base ` M ) /\ I e. ( Base ` M ) ) -> ( a ( +g ` M ) I ) = ( a o. I ) ) |
| 39 |
30 28 38
|
syl2anr |
|- ( ( I e. B /\ a e. B ) -> ( a ( +g ` M ) I ) = ( a o. I ) ) |
| 40 |
34
|
simprd |
|- ( a e. B -> ( a o. I ) = a ) |
| 41 |
40
|
adantl |
|- ( ( I e. B /\ a e. B ) -> ( a o. I ) = a ) |
| 42 |
39 41
|
eqtrd |
|- ( ( I e. B /\ a e. B ) -> ( a ( +g ` M ) I ) = a ) |
| 43 |
16 25 26 37 42
|
grpidd |
|- ( I e. B -> I = ( 0g ` S ) ) |
| 44 |
13 43
|
ax-mp |
|- I = ( 0g ` S ) |