Step |
Hyp |
Ref |
Expression |
1 |
|
smndex1ibas.m |
|- M = ( EndoFMnd ` NN0 ) |
2 |
|
smndex1ibas.n |
|- N e. NN |
3 |
|
smndex1ibas.i |
|- I = ( x e. NN0 |-> ( x mod N ) ) |
4 |
|
smndex1ibas.g |
|- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
5 |
|
fconstmpt |
|- ( NN0 X. { K } ) = ( x e. NN0 |-> K ) |
6 |
5
|
eqcomi |
|- ( x e. NN0 |-> K ) = ( NN0 X. { K } ) |
7 |
6
|
a1i |
|- ( K e. ( 0 ..^ N ) -> ( x e. NN0 |-> K ) = ( NN0 X. { K } ) ) |
8 |
7
|
coeq2d |
|- ( K e. ( 0 ..^ N ) -> ( I o. ( x e. NN0 |-> K ) ) = ( I o. ( NN0 X. { K } ) ) ) |
9 |
|
simpl |
|- ( ( n = K /\ x e. NN0 ) -> n = K ) |
10 |
9
|
mpteq2dva |
|- ( n = K -> ( x e. NN0 |-> n ) = ( x e. NN0 |-> K ) ) |
11 |
|
nn0ex |
|- NN0 e. _V |
12 |
11
|
mptex |
|- ( x e. NN0 |-> K ) e. _V |
13 |
10 4 12
|
fvmpt |
|- ( K e. ( 0 ..^ N ) -> ( G ` K ) = ( x e. NN0 |-> K ) ) |
14 |
13
|
coeq2d |
|- ( K e. ( 0 ..^ N ) -> ( I o. ( G ` K ) ) = ( I o. ( x e. NN0 |-> K ) ) ) |
15 |
|
oveq1 |
|- ( x = K -> ( x mod N ) = ( K mod N ) ) |
16 |
|
zmodidfzoimp |
|- ( K e. ( 0 ..^ N ) -> ( K mod N ) = K ) |
17 |
15 16
|
sylan9eqr |
|- ( ( K e. ( 0 ..^ N ) /\ x = K ) -> ( x mod N ) = K ) |
18 |
|
elfzonn0 |
|- ( K e. ( 0 ..^ N ) -> K e. NN0 ) |
19 |
3 17 18 18
|
fvmptd2 |
|- ( K e. ( 0 ..^ N ) -> ( I ` K ) = K ) |
20 |
19
|
eqcomd |
|- ( K e. ( 0 ..^ N ) -> K = ( I ` K ) ) |
21 |
20
|
sneqd |
|- ( K e. ( 0 ..^ N ) -> { K } = { ( I ` K ) } ) |
22 |
21
|
xpeq2d |
|- ( K e. ( 0 ..^ N ) -> ( NN0 X. { K } ) = ( NN0 X. { ( I ` K ) } ) ) |
23 |
13 6
|
eqtrdi |
|- ( K e. ( 0 ..^ N ) -> ( G ` K ) = ( NN0 X. { K } ) ) |
24 |
|
ovex |
|- ( x mod N ) e. _V |
25 |
24 3
|
fnmpti |
|- I Fn NN0 |
26 |
|
fcoconst |
|- ( ( I Fn NN0 /\ K e. NN0 ) -> ( I o. ( NN0 X. { K } ) ) = ( NN0 X. { ( I ` K ) } ) ) |
27 |
25 18 26
|
sylancr |
|- ( K e. ( 0 ..^ N ) -> ( I o. ( NN0 X. { K } ) ) = ( NN0 X. { ( I ` K ) } ) ) |
28 |
22 23 27
|
3eqtr4d |
|- ( K e. ( 0 ..^ N ) -> ( G ` K ) = ( I o. ( NN0 X. { K } ) ) ) |
29 |
8 14 28
|
3eqtr4d |
|- ( K e. ( 0 ..^ N ) -> ( I o. ( G ` K ) ) = ( G ` K ) ) |