| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smndex2dbas.m |  |-  M = ( EndoFMnd ` NN0 ) | 
						
							| 2 |  | smndex2dbas.b |  |-  B = ( Base ` M ) | 
						
							| 3 |  | smndex2dbas.0 |  |-  .0. = ( 0g ` M ) | 
						
							| 4 |  | smndex2dbas.d |  |-  D = ( x e. NN0 |-> ( 2 x. x ) ) | 
						
							| 5 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 6 | 5 | a1i |  |-  ( x e. NN0 -> 2 e. NN0 ) | 
						
							| 7 |  | id |  |-  ( x e. NN0 -> x e. NN0 ) | 
						
							| 8 | 6 7 | nn0mulcld |  |-  ( x e. NN0 -> ( 2 x. x ) e. NN0 ) | 
						
							| 9 | 4 8 | fmpti |  |-  D : NN0 --> NN0 | 
						
							| 10 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 11 | 10 | mptex |  |-  ( x e. NN0 |-> ( 2 x. x ) ) e. _V | 
						
							| 12 | 4 11 | eqeltri |  |-  D e. _V | 
						
							| 13 | 1 2 | elefmndbas2 |  |-  ( D e. _V -> ( D e. B <-> D : NN0 --> NN0 ) ) | 
						
							| 14 | 12 13 | ax-mp |  |-  ( D e. B <-> D : NN0 --> NN0 ) | 
						
							| 15 | 9 14 | mpbir |  |-  D e. B |