Metamath Proof Explorer


Theorem smndex2dbas

Description: The doubling function D is an endofunction on NN0 . (Contributed by AV, 18-Feb-2024)

Ref Expression
Hypotheses smndex2dbas.m
|- M = ( EndoFMnd ` NN0 )
smndex2dbas.b
|- B = ( Base ` M )
smndex2dbas.0
|- .0. = ( 0g ` M )
smndex2dbas.d
|- D = ( x e. NN0 |-> ( 2 x. x ) )
Assertion smndex2dbas
|- D e. B

Proof

Step Hyp Ref Expression
1 smndex2dbas.m
 |-  M = ( EndoFMnd ` NN0 )
2 smndex2dbas.b
 |-  B = ( Base ` M )
3 smndex2dbas.0
 |-  .0. = ( 0g ` M )
4 smndex2dbas.d
 |-  D = ( x e. NN0 |-> ( 2 x. x ) )
5 2nn0
 |-  2 e. NN0
6 5 a1i
 |-  ( x e. NN0 -> 2 e. NN0 )
7 id
 |-  ( x e. NN0 -> x e. NN0 )
8 6 7 nn0mulcld
 |-  ( x e. NN0 -> ( 2 x. x ) e. NN0 )
9 4 8 fmpti
 |-  D : NN0 --> NN0
10 nn0ex
 |-  NN0 e. _V
11 10 mptex
 |-  ( x e. NN0 |-> ( 2 x. x ) ) e. _V
12 4 11 eqeltri
 |-  D e. _V
13 1 2 elefmndbas2
 |-  ( D e. _V -> ( D e. B <-> D : NN0 --> NN0 ) )
14 12 13 ax-mp
 |-  ( D e. B <-> D : NN0 --> NN0 )
15 9 14 mpbir
 |-  D e. B