Step |
Hyp |
Ref |
Expression |
1 |
|
smndex2dbas.m |
|- M = ( EndoFMnd ` NN0 ) |
2 |
|
smndex2dbas.b |
|- B = ( Base ` M ) |
3 |
|
smndex2dbas.0 |
|- .0. = ( 0g ` M ) |
4 |
|
smndex2dbas.d |
|- D = ( x e. NN0 |-> ( 2 x. x ) ) |
5 |
|
smndex2hbas.n |
|- N e. NN0 |
6 |
|
smndex2hbas.h |
|- H = ( x e. NN0 |-> if ( 2 || x , ( x / 2 ) , N ) ) |
7 |
|
2nn0 |
|- 2 e. NN0 |
8 |
|
nn0mulcl |
|- ( ( 2 e. NN0 /\ y e. NN0 ) -> ( 2 x. y ) e. NN0 ) |
9 |
|
oveq2 |
|- ( x = y -> ( 2 x. x ) = ( 2 x. y ) ) |
10 |
9
|
cbvmptv |
|- ( x e. NN0 |-> ( 2 x. x ) ) = ( y e. NN0 |-> ( 2 x. y ) ) |
11 |
4 10
|
eqtri |
|- D = ( y e. NN0 |-> ( 2 x. y ) ) |
12 |
11
|
a1i |
|- ( 2 e. NN0 -> D = ( y e. NN0 |-> ( 2 x. y ) ) ) |
13 |
6
|
a1i |
|- ( 2 e. NN0 -> H = ( x e. NN0 |-> if ( 2 || x , ( x / 2 ) , N ) ) ) |
14 |
|
breq2 |
|- ( x = ( 2 x. y ) -> ( 2 || x <-> 2 || ( 2 x. y ) ) ) |
15 |
|
oveq1 |
|- ( x = ( 2 x. y ) -> ( x / 2 ) = ( ( 2 x. y ) / 2 ) ) |
16 |
14 15
|
ifbieq1d |
|- ( x = ( 2 x. y ) -> if ( 2 || x , ( x / 2 ) , N ) = if ( 2 || ( 2 x. y ) , ( ( 2 x. y ) / 2 ) , N ) ) |
17 |
8 12 13 16
|
fmptco |
|- ( 2 e. NN0 -> ( H o. D ) = ( y e. NN0 |-> if ( 2 || ( 2 x. y ) , ( ( 2 x. y ) / 2 ) , N ) ) ) |
18 |
7 17
|
ax-mp |
|- ( H o. D ) = ( y e. NN0 |-> if ( 2 || ( 2 x. y ) , ( ( 2 x. y ) / 2 ) , N ) ) |
19 |
|
nn0z |
|- ( y e. NN0 -> y e. ZZ ) |
20 |
|
eqidd |
|- ( y e. NN0 -> ( 2 x. y ) = ( 2 x. y ) ) |
21 |
|
2teven |
|- ( ( y e. ZZ /\ ( 2 x. y ) = ( 2 x. y ) ) -> 2 || ( 2 x. y ) ) |
22 |
19 20 21
|
syl2anc |
|- ( y e. NN0 -> 2 || ( 2 x. y ) ) |
23 |
22
|
iftrued |
|- ( y e. NN0 -> if ( 2 || ( 2 x. y ) , ( ( 2 x. y ) / 2 ) , N ) = ( ( 2 x. y ) / 2 ) ) |
24 |
23
|
mpteq2ia |
|- ( y e. NN0 |-> if ( 2 || ( 2 x. y ) , ( ( 2 x. y ) / 2 ) , N ) ) = ( y e. NN0 |-> ( ( 2 x. y ) / 2 ) ) |
25 |
|
nn0cn |
|- ( y e. NN0 -> y e. CC ) |
26 |
|
2cnd |
|- ( y e. NN0 -> 2 e. CC ) |
27 |
|
2ne0 |
|- 2 =/= 0 |
28 |
27
|
a1i |
|- ( y e. NN0 -> 2 =/= 0 ) |
29 |
25 26 28
|
divcan3d |
|- ( y e. NN0 -> ( ( 2 x. y ) / 2 ) = y ) |
30 |
29
|
mpteq2ia |
|- ( y e. NN0 |-> ( ( 2 x. y ) / 2 ) ) = ( y e. NN0 |-> y ) |
31 |
|
nn0ex |
|- NN0 e. _V |
32 |
1
|
efmndid |
|- ( NN0 e. _V -> ( _I |` NN0 ) = ( 0g ` M ) ) |
33 |
31 32
|
ax-mp |
|- ( _I |` NN0 ) = ( 0g ` M ) |
34 |
|
mptresid |
|- ( _I |` NN0 ) = ( y e. NN0 |-> y ) |
35 |
3 33 34
|
3eqtr2ri |
|- ( y e. NN0 |-> y ) = .0. |
36 |
30 35
|
eqtri |
|- ( y e. NN0 |-> ( ( 2 x. y ) / 2 ) ) = .0. |
37 |
24 36
|
eqtri |
|- ( y e. NN0 |-> if ( 2 || ( 2 x. y ) , ( ( 2 x. y ) / 2 ) , N ) ) = .0. |
38 |
18 37
|
eqtri |
|- ( H o. D ) = .0. |