Step |
Hyp |
Ref |
Expression |
1 |
|
smndex2dbas.m |
|- M = ( EndoFMnd ` NN0 ) |
2 |
|
smndex2dbas.b |
|- B = ( Base ` M ) |
3 |
|
smndex2dbas.0 |
|- .0. = ( 0g ` M ) |
4 |
|
smndex2dbas.d |
|- D = ( x e. NN0 |-> ( 2 x. x ) ) |
5 |
|
df-ne |
|- ( ( D o. f ) =/= .0. <-> -. ( D o. f ) = .0. ) |
6 |
5
|
ralbii |
|- ( A. f e. B ( D o. f ) =/= .0. <-> A. f e. B -. ( D o. f ) = .0. ) |
7 |
1 2
|
efmndbasf |
|- ( f e. B -> f : NN0 --> NN0 ) |
8 |
|
1nn0 |
|- 1 e. NN0 |
9 |
|
nn0z |
|- ( x e. NN0 -> x e. ZZ ) |
10 |
|
0zd |
|- ( x e. NN0 -> 0 e. ZZ ) |
11 |
|
zneo |
|- ( ( x e. ZZ /\ 0 e. ZZ ) -> ( 2 x. x ) =/= ( ( 2 x. 0 ) + 1 ) ) |
12 |
9 10 11
|
syl2anc |
|- ( x e. NN0 -> ( 2 x. x ) =/= ( ( 2 x. 0 ) + 1 ) ) |
13 |
|
2t0e0 |
|- ( 2 x. 0 ) = 0 |
14 |
13
|
oveq1i |
|- ( ( 2 x. 0 ) + 1 ) = ( 0 + 1 ) |
15 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
16 |
14 15
|
eqtri |
|- ( ( 2 x. 0 ) + 1 ) = 1 |
17 |
16
|
a1i |
|- ( x e. NN0 -> ( ( 2 x. 0 ) + 1 ) = 1 ) |
18 |
12 17
|
neeqtrd |
|- ( x e. NN0 -> ( 2 x. x ) =/= 1 ) |
19 |
18
|
necomd |
|- ( x e. NN0 -> 1 =/= ( 2 x. x ) ) |
20 |
19
|
neneqd |
|- ( x e. NN0 -> -. 1 = ( 2 x. x ) ) |
21 |
20
|
nrex |
|- -. E. x e. NN0 1 = ( 2 x. x ) |
22 |
|
1ex |
|- 1 e. _V |
23 |
|
eqeq1 |
|- ( y = 1 -> ( y = ( 2 x. x ) <-> 1 = ( 2 x. x ) ) ) |
24 |
23
|
rexbidv |
|- ( y = 1 -> ( E. x e. NN0 y = ( 2 x. x ) <-> E. x e. NN0 1 = ( 2 x. x ) ) ) |
25 |
22 24
|
elab |
|- ( 1 e. { y | E. x e. NN0 y = ( 2 x. x ) } <-> E. x e. NN0 1 = ( 2 x. x ) ) |
26 |
21 25
|
mtbir |
|- -. 1 e. { y | E. x e. NN0 y = ( 2 x. x ) } |
27 |
|
nelss |
|- ( ( 1 e. NN0 /\ -. 1 e. { y | E. x e. NN0 y = ( 2 x. x ) } ) -> -. NN0 C_ { y | E. x e. NN0 y = ( 2 x. x ) } ) |
28 |
8 26 27
|
mp2an |
|- -. NN0 C_ { y | E. x e. NN0 y = ( 2 x. x ) } |
29 |
28
|
intnan |
|- -. ( { y | E. x e. NN0 y = ( 2 x. x ) } C_ NN0 /\ NN0 C_ { y | E. x e. NN0 y = ( 2 x. x ) } ) |
30 |
|
eqss |
|- ( { y | E. x e. NN0 y = ( 2 x. x ) } = NN0 <-> ( { y | E. x e. NN0 y = ( 2 x. x ) } C_ NN0 /\ NN0 C_ { y | E. x e. NN0 y = ( 2 x. x ) } ) ) |
31 |
29 30
|
mtbir |
|- -. { y | E. x e. NN0 y = ( 2 x. x ) } = NN0 |
32 |
4
|
rnmpt |
|- ran D = { y | E. x e. NN0 y = ( 2 x. x ) } |
33 |
32
|
eqeq1i |
|- ( ran D = NN0 <-> { y | E. x e. NN0 y = ( 2 x. x ) } = NN0 ) |
34 |
31 33
|
mtbir |
|- -. ran D = NN0 |
35 |
34
|
olci |
|- ( -. D Fn NN0 \/ -. ran D = NN0 ) |
36 |
|
ianor |
|- ( -. ( D Fn NN0 /\ ran D = NN0 ) <-> ( -. D Fn NN0 \/ -. ran D = NN0 ) ) |
37 |
|
df-fo |
|- ( D : NN0 -onto-> NN0 <-> ( D Fn NN0 /\ ran D = NN0 ) ) |
38 |
36 37
|
xchnxbir |
|- ( -. D : NN0 -onto-> NN0 <-> ( -. D Fn NN0 \/ -. ran D = NN0 ) ) |
39 |
35 38
|
mpbir |
|- -. D : NN0 -onto-> NN0 |
40 |
39
|
a1i |
|- ( f : NN0 --> NN0 -> -. D : NN0 -onto-> NN0 ) |
41 |
1 2 3 4
|
smndex2dbas |
|- D e. B |
42 |
1 2
|
efmndbasf |
|- ( D e. B -> D : NN0 --> NN0 ) |
43 |
|
simpl |
|- ( ( D : NN0 --> NN0 /\ ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) ) -> D : NN0 --> NN0 ) |
44 |
|
simpl |
|- ( ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) -> f : NN0 --> NN0 ) |
45 |
44
|
adantl |
|- ( ( D : NN0 --> NN0 /\ ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) ) -> f : NN0 --> NN0 ) |
46 |
|
nn0ex |
|- NN0 e. _V |
47 |
1
|
efmndid |
|- ( NN0 e. _V -> ( _I |` NN0 ) = ( 0g ` M ) ) |
48 |
46 47
|
ax-mp |
|- ( _I |` NN0 ) = ( 0g ` M ) |
49 |
3 48
|
eqtr4i |
|- .0. = ( _I |` NN0 ) |
50 |
49
|
eqeq2i |
|- ( ( D o. f ) = .0. <-> ( D o. f ) = ( _I |` NN0 ) ) |
51 |
50
|
biimpi |
|- ( ( D o. f ) = .0. -> ( D o. f ) = ( _I |` NN0 ) ) |
52 |
51
|
adantl |
|- ( ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) -> ( D o. f ) = ( _I |` NN0 ) ) |
53 |
52
|
adantl |
|- ( ( D : NN0 --> NN0 /\ ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) ) -> ( D o. f ) = ( _I |` NN0 ) ) |
54 |
|
fcofo |
|- ( ( D : NN0 --> NN0 /\ f : NN0 --> NN0 /\ ( D o. f ) = ( _I |` NN0 ) ) -> D : NN0 -onto-> NN0 ) |
55 |
43 45 53 54
|
syl3anc |
|- ( ( D : NN0 --> NN0 /\ ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) ) -> D : NN0 -onto-> NN0 ) |
56 |
55
|
ex |
|- ( D : NN0 --> NN0 -> ( ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) -> D : NN0 -onto-> NN0 ) ) |
57 |
41 42 56
|
mp2b |
|- ( ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) -> D : NN0 -onto-> NN0 ) |
58 |
40 57
|
mtand |
|- ( f : NN0 --> NN0 -> -. ( D o. f ) = .0. ) |
59 |
7 58
|
syl |
|- ( f e. B -> -. ( D o. f ) = .0. ) |
60 |
6 59
|
mprgbir |
|- A. f e. B ( D o. f ) =/= .0. |