| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smndex2dbas.m |  |-  M = ( EndoFMnd ` NN0 ) | 
						
							| 2 |  | smndex2dbas.b |  |-  B = ( Base ` M ) | 
						
							| 3 |  | smndex2dbas.0 |  |-  .0. = ( 0g ` M ) | 
						
							| 4 |  | smndex2dbas.d |  |-  D = ( x e. NN0 |-> ( 2 x. x ) ) | 
						
							| 5 |  | df-ne |  |-  ( ( D o. f ) =/= .0. <-> -. ( D o. f ) = .0. ) | 
						
							| 6 | 5 | ralbii |  |-  ( A. f e. B ( D o. f ) =/= .0. <-> A. f e. B -. ( D o. f ) = .0. ) | 
						
							| 7 | 1 2 | efmndbasf |  |-  ( f e. B -> f : NN0 --> NN0 ) | 
						
							| 8 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 9 |  | nn0z |  |-  ( x e. NN0 -> x e. ZZ ) | 
						
							| 10 |  | 0zd |  |-  ( x e. NN0 -> 0 e. ZZ ) | 
						
							| 11 |  | zneo |  |-  ( ( x e. ZZ /\ 0 e. ZZ ) -> ( 2 x. x ) =/= ( ( 2 x. 0 ) + 1 ) ) | 
						
							| 12 | 9 10 11 | syl2anc |  |-  ( x e. NN0 -> ( 2 x. x ) =/= ( ( 2 x. 0 ) + 1 ) ) | 
						
							| 13 |  | 2t0e0 |  |-  ( 2 x. 0 ) = 0 | 
						
							| 14 | 13 | oveq1i |  |-  ( ( 2 x. 0 ) + 1 ) = ( 0 + 1 ) | 
						
							| 15 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 16 | 14 15 | eqtri |  |-  ( ( 2 x. 0 ) + 1 ) = 1 | 
						
							| 17 | 16 | a1i |  |-  ( x e. NN0 -> ( ( 2 x. 0 ) + 1 ) = 1 ) | 
						
							| 18 | 12 17 | neeqtrd |  |-  ( x e. NN0 -> ( 2 x. x ) =/= 1 ) | 
						
							| 19 | 18 | necomd |  |-  ( x e. NN0 -> 1 =/= ( 2 x. x ) ) | 
						
							| 20 | 19 | neneqd |  |-  ( x e. NN0 -> -. 1 = ( 2 x. x ) ) | 
						
							| 21 | 20 | nrex |  |-  -. E. x e. NN0 1 = ( 2 x. x ) | 
						
							| 22 |  | 1ex |  |-  1 e. _V | 
						
							| 23 |  | eqeq1 |  |-  ( y = 1 -> ( y = ( 2 x. x ) <-> 1 = ( 2 x. x ) ) ) | 
						
							| 24 | 23 | rexbidv |  |-  ( y = 1 -> ( E. x e. NN0 y = ( 2 x. x ) <-> E. x e. NN0 1 = ( 2 x. x ) ) ) | 
						
							| 25 | 22 24 | elab |  |-  ( 1 e. { y | E. x e. NN0 y = ( 2 x. x ) } <-> E. x e. NN0 1 = ( 2 x. x ) ) | 
						
							| 26 | 21 25 | mtbir |  |-  -. 1 e. { y | E. x e. NN0 y = ( 2 x. x ) } | 
						
							| 27 |  | nelss |  |-  ( ( 1 e. NN0 /\ -. 1 e. { y | E. x e. NN0 y = ( 2 x. x ) } ) -> -. NN0 C_ { y | E. x e. NN0 y = ( 2 x. x ) } ) | 
						
							| 28 | 8 26 27 | mp2an |  |-  -. NN0 C_ { y | E. x e. NN0 y = ( 2 x. x ) } | 
						
							| 29 | 28 | intnan |  |-  -. ( { y | E. x e. NN0 y = ( 2 x. x ) } C_ NN0 /\ NN0 C_ { y | E. x e. NN0 y = ( 2 x. x ) } ) | 
						
							| 30 |  | eqss |  |-  ( { y | E. x e. NN0 y = ( 2 x. x ) } = NN0 <-> ( { y | E. x e. NN0 y = ( 2 x. x ) } C_ NN0 /\ NN0 C_ { y | E. x e. NN0 y = ( 2 x. x ) } ) ) | 
						
							| 31 | 29 30 | mtbir |  |-  -. { y | E. x e. NN0 y = ( 2 x. x ) } = NN0 | 
						
							| 32 | 4 | rnmpt |  |-  ran D = { y | E. x e. NN0 y = ( 2 x. x ) } | 
						
							| 33 | 32 | eqeq1i |  |-  ( ran D = NN0 <-> { y | E. x e. NN0 y = ( 2 x. x ) } = NN0 ) | 
						
							| 34 | 31 33 | mtbir |  |-  -. ran D = NN0 | 
						
							| 35 | 34 | olci |  |-  ( -. D Fn NN0 \/ -. ran D = NN0 ) | 
						
							| 36 |  | ianor |  |-  ( -. ( D Fn NN0 /\ ran D = NN0 ) <-> ( -. D Fn NN0 \/ -. ran D = NN0 ) ) | 
						
							| 37 |  | df-fo |  |-  ( D : NN0 -onto-> NN0 <-> ( D Fn NN0 /\ ran D = NN0 ) ) | 
						
							| 38 | 36 37 | xchnxbir |  |-  ( -. D : NN0 -onto-> NN0 <-> ( -. D Fn NN0 \/ -. ran D = NN0 ) ) | 
						
							| 39 | 35 38 | mpbir |  |-  -. D : NN0 -onto-> NN0 | 
						
							| 40 | 39 | a1i |  |-  ( f : NN0 --> NN0 -> -. D : NN0 -onto-> NN0 ) | 
						
							| 41 | 1 2 3 4 | smndex2dbas |  |-  D e. B | 
						
							| 42 | 1 2 | efmndbasf |  |-  ( D e. B -> D : NN0 --> NN0 ) | 
						
							| 43 |  | simpl |  |-  ( ( D : NN0 --> NN0 /\ ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) ) -> D : NN0 --> NN0 ) | 
						
							| 44 |  | simpl |  |-  ( ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) -> f : NN0 --> NN0 ) | 
						
							| 45 | 44 | adantl |  |-  ( ( D : NN0 --> NN0 /\ ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) ) -> f : NN0 --> NN0 ) | 
						
							| 46 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 47 | 1 | efmndid |  |-  ( NN0 e. _V -> ( _I |` NN0 ) = ( 0g ` M ) ) | 
						
							| 48 | 46 47 | ax-mp |  |-  ( _I |` NN0 ) = ( 0g ` M ) | 
						
							| 49 | 3 48 | eqtr4i |  |-  .0. = ( _I |` NN0 ) | 
						
							| 50 | 49 | eqeq2i |  |-  ( ( D o. f ) = .0. <-> ( D o. f ) = ( _I |` NN0 ) ) | 
						
							| 51 | 50 | biimpi |  |-  ( ( D o. f ) = .0. -> ( D o. f ) = ( _I |` NN0 ) ) | 
						
							| 52 | 51 | adantl |  |-  ( ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) -> ( D o. f ) = ( _I |` NN0 ) ) | 
						
							| 53 | 52 | adantl |  |-  ( ( D : NN0 --> NN0 /\ ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) ) -> ( D o. f ) = ( _I |` NN0 ) ) | 
						
							| 54 |  | fcofo |  |-  ( ( D : NN0 --> NN0 /\ f : NN0 --> NN0 /\ ( D o. f ) = ( _I |` NN0 ) ) -> D : NN0 -onto-> NN0 ) | 
						
							| 55 | 43 45 53 54 | syl3anc |  |-  ( ( D : NN0 --> NN0 /\ ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) ) -> D : NN0 -onto-> NN0 ) | 
						
							| 56 | 55 | ex |  |-  ( D : NN0 --> NN0 -> ( ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) -> D : NN0 -onto-> NN0 ) ) | 
						
							| 57 | 41 42 56 | mp2b |  |-  ( ( f : NN0 --> NN0 /\ ( D o. f ) = .0. ) -> D : NN0 -onto-> NN0 ) | 
						
							| 58 | 40 57 | mtand |  |-  ( f : NN0 --> NN0 -> -. ( D o. f ) = .0. ) | 
						
							| 59 | 7 58 | syl |  |-  ( f e. B -> -. ( D o. f ) = .0. ) | 
						
							| 60 | 6 59 | mprgbir |  |-  A. f e. B ( D o. f ) =/= .0. |