Step |
Hyp |
Ref |
Expression |
1 |
|
smndex2dbas.m |
|- M = ( EndoFMnd ` NN0 ) |
2 |
|
smndex2dbas.b |
|- B = ( Base ` M ) |
3 |
|
smndex2dbas.0 |
|- .0. = ( 0g ` M ) |
4 |
|
smndex2dbas.d |
|- D = ( x e. NN0 |-> ( 2 x. x ) ) |
5 |
|
smndex2hbas.n |
|- N e. NN0 |
6 |
|
smndex2hbas.h |
|- H = ( x e. NN0 |-> if ( 2 || x , ( x / 2 ) , N ) ) |
7 |
|
nn0ehalf |
|- ( ( x e. NN0 /\ 2 || x ) -> ( x / 2 ) e. NN0 ) |
8 |
5
|
a1i |
|- ( ( x e. NN0 /\ -. 2 || x ) -> N e. NN0 ) |
9 |
7 8
|
ifclda |
|- ( x e. NN0 -> if ( 2 || x , ( x / 2 ) , N ) e. NN0 ) |
10 |
6 9
|
fmpti |
|- H : NN0 --> NN0 |
11 |
|
nn0ex |
|- NN0 e. _V |
12 |
11
|
mptex |
|- ( x e. NN0 |-> if ( 2 || x , ( x / 2 ) , N ) ) e. _V |
13 |
6 12
|
eqeltri |
|- H e. _V |
14 |
1 2
|
elefmndbas2 |
|- ( H e. _V -> ( H e. B <-> H : NN0 --> NN0 ) ) |
15 |
13 14
|
ax-mp |
|- ( H e. B <-> H : NN0 --> NN0 ) |
16 |
10 15
|
mpbir |
|- H e. B |