| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( F : A --> B /\ Smo F ) -> F : A --> B ) |
| 2 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
| 3 |
|
smodm2 |
|- ( ( F Fn A /\ Smo F ) -> Ord A ) |
| 4 |
|
ordelord |
|- ( ( Ord A /\ z e. A ) -> Ord z ) |
| 5 |
4
|
ex |
|- ( Ord A -> ( z e. A -> Ord z ) ) |
| 6 |
3 5
|
syl |
|- ( ( F Fn A /\ Smo F ) -> ( z e. A -> Ord z ) ) |
| 7 |
|
ordelord |
|- ( ( Ord A /\ w e. A ) -> Ord w ) |
| 8 |
7
|
ex |
|- ( Ord A -> ( w e. A -> Ord w ) ) |
| 9 |
3 8
|
syl |
|- ( ( F Fn A /\ Smo F ) -> ( w e. A -> Ord w ) ) |
| 10 |
6 9
|
anim12d |
|- ( ( F Fn A /\ Smo F ) -> ( ( z e. A /\ w e. A ) -> ( Ord z /\ Ord w ) ) ) |
| 11 |
|
ordtri3or |
|- ( ( Ord z /\ Ord w ) -> ( z e. w \/ z = w \/ w e. z ) ) |
| 12 |
|
simp1rr |
|- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> w e. A ) |
| 13 |
|
smoel2 |
|- ( ( ( F Fn A /\ Smo F ) /\ ( x e. A /\ y e. x ) ) -> ( F ` y ) e. ( F ` x ) ) |
| 14 |
13
|
ralrimivva |
|- ( ( F Fn A /\ Smo F ) -> A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) ) |
| 15 |
14
|
adantr |
|- ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) ) |
| 16 |
15
|
3ad2ant1 |
|- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) ) |
| 17 |
|
simp2 |
|- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> z e. w ) |
| 18 |
|
simp3 |
|- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> ( F ` z ) = ( F ` w ) ) |
| 19 |
|
fveq2 |
|- ( x = w -> ( F ` x ) = ( F ` w ) ) |
| 20 |
19
|
eleq2d |
|- ( x = w -> ( ( F ` y ) e. ( F ` x ) <-> ( F ` y ) e. ( F ` w ) ) ) |
| 21 |
20
|
raleqbi1dv |
|- ( x = w -> ( A. y e. x ( F ` y ) e. ( F ` x ) <-> A. y e. w ( F ` y ) e. ( F ` w ) ) ) |
| 22 |
21
|
rspcv |
|- ( w e. A -> ( A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) -> A. y e. w ( F ` y ) e. ( F ` w ) ) ) |
| 23 |
|
fveq2 |
|- ( y = z -> ( F ` y ) = ( F ` z ) ) |
| 24 |
23
|
eleq1d |
|- ( y = z -> ( ( F ` y ) e. ( F ` w ) <-> ( F ` z ) e. ( F ` w ) ) ) |
| 25 |
24
|
rspccv |
|- ( A. y e. w ( F ` y ) e. ( F ` w ) -> ( z e. w -> ( F ` z ) e. ( F ` w ) ) ) |
| 26 |
22 25
|
syl6 |
|- ( w e. A -> ( A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) -> ( z e. w -> ( F ` z ) e. ( F ` w ) ) ) ) |
| 27 |
26
|
3imp |
|- ( ( w e. A /\ A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) /\ z e. w ) -> ( F ` z ) e. ( F ` w ) ) |
| 28 |
|
eleq1 |
|- ( ( F ` z ) = ( F ` w ) -> ( ( F ` z ) e. ( F ` w ) <-> ( F ` w ) e. ( F ` w ) ) ) |
| 29 |
28
|
biimpac |
|- ( ( ( F ` z ) e. ( F ` w ) /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) |
| 30 |
27 29
|
sylan |
|- ( ( ( w e. A /\ A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) /\ z e. w ) /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) |
| 31 |
12 16 17 18 30
|
syl31anc |
|- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) |
| 32 |
|
smofvon2 |
|- ( Smo F -> ( F ` w ) e. On ) |
| 33 |
|
eloni |
|- ( ( F ` w ) e. On -> Ord ( F ` w ) ) |
| 34 |
|
ordirr |
|- ( Ord ( F ` w ) -> -. ( F ` w ) e. ( F ` w ) ) |
| 35 |
32 33 34
|
3syl |
|- ( Smo F -> -. ( F ` w ) e. ( F ` w ) ) |
| 36 |
35
|
ad2antlr |
|- ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> -. ( F ` w ) e. ( F ` w ) ) |
| 37 |
36
|
3ad2ant1 |
|- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> -. ( F ` w ) e. ( F ` w ) ) |
| 38 |
31 37
|
pm2.21dd |
|- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ z e. w /\ ( F ` z ) = ( F ` w ) ) -> z = w ) |
| 39 |
38
|
3exp |
|- ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> ( z e. w -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
| 40 |
|
ax-1 |
|- ( z = w -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) |
| 41 |
40
|
a1i |
|- ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> ( z = w -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
| 42 |
|
simp1rl |
|- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> z e. A ) |
| 43 |
15
|
3ad2ant1 |
|- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) ) |
| 44 |
|
simp2 |
|- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> w e. z ) |
| 45 |
|
simp3 |
|- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> ( F ` z ) = ( F ` w ) ) |
| 46 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
| 47 |
46
|
eleq2d |
|- ( x = z -> ( ( F ` y ) e. ( F ` x ) <-> ( F ` y ) e. ( F ` z ) ) ) |
| 48 |
47
|
raleqbi1dv |
|- ( x = z -> ( A. y e. x ( F ` y ) e. ( F ` x ) <-> A. y e. z ( F ` y ) e. ( F ` z ) ) ) |
| 49 |
48
|
rspcv |
|- ( z e. A -> ( A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) -> A. y e. z ( F ` y ) e. ( F ` z ) ) ) |
| 50 |
|
fveq2 |
|- ( y = w -> ( F ` y ) = ( F ` w ) ) |
| 51 |
50
|
eleq1d |
|- ( y = w -> ( ( F ` y ) e. ( F ` z ) <-> ( F ` w ) e. ( F ` z ) ) ) |
| 52 |
51
|
rspccv |
|- ( A. y e. z ( F ` y ) e. ( F ` z ) -> ( w e. z -> ( F ` w ) e. ( F ` z ) ) ) |
| 53 |
49 52
|
syl6 |
|- ( z e. A -> ( A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) -> ( w e. z -> ( F ` w ) e. ( F ` z ) ) ) ) |
| 54 |
53
|
3imp |
|- ( ( z e. A /\ A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) /\ w e. z ) -> ( F ` w ) e. ( F ` z ) ) |
| 55 |
|
eleq2 |
|- ( ( F ` z ) = ( F ` w ) -> ( ( F ` w ) e. ( F ` z ) <-> ( F ` w ) e. ( F ` w ) ) ) |
| 56 |
55
|
biimpac |
|- ( ( ( F ` w ) e. ( F ` z ) /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) |
| 57 |
54 56
|
sylan |
|- ( ( ( z e. A /\ A. x e. A A. y e. x ( F ` y ) e. ( F ` x ) /\ w e. z ) /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) |
| 58 |
42 43 44 45 57
|
syl31anc |
|- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> ( F ` w ) e. ( F ` w ) ) |
| 59 |
36
|
3ad2ant1 |
|- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> -. ( F ` w ) e. ( F ` w ) ) |
| 60 |
58 59
|
pm2.21dd |
|- ( ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) /\ w e. z /\ ( F ` z ) = ( F ` w ) ) -> z = w ) |
| 61 |
60
|
3exp |
|- ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> ( w e. z -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
| 62 |
39 41 61
|
3jaod |
|- ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> ( ( z e. w \/ z = w \/ w e. z ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
| 63 |
11 62
|
syl5 |
|- ( ( ( F Fn A /\ Smo F ) /\ ( z e. A /\ w e. A ) ) -> ( ( Ord z /\ Ord w ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
| 64 |
63
|
ex |
|- ( ( F Fn A /\ Smo F ) -> ( ( z e. A /\ w e. A ) -> ( ( Ord z /\ Ord w ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) ) |
| 65 |
10 64
|
mpdd |
|- ( ( F Fn A /\ Smo F ) -> ( ( z e. A /\ w e. A ) -> ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
| 66 |
65
|
ralrimivv |
|- ( ( F Fn A /\ Smo F ) -> A. z e. A A. w e. A ( ( F ` z ) = ( F ` w ) -> z = w ) ) |
| 67 |
2 66
|
sylan |
|- ( ( F : A --> B /\ Smo F ) -> A. z e. A A. w e. A ( ( F ` z ) = ( F ` w ) -> z = w ) ) |
| 68 |
|
dff13 |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ A. z e. A A. w e. A ( ( F ` z ) = ( F ` w ) -> z = w ) ) ) |
| 69 |
1 67 68
|
sylanbrc |
|- ( ( F : A --> B /\ Smo F ) -> F : A -1-1-> B ) |