| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 |  |-  ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> F : A --> B ) | 
						
							| 2 | 1 | ffnd |  |-  ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> F Fn A ) | 
						
							| 3 |  | simpl2 |  |-  ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> Smo F ) | 
						
							| 4 |  | smodm2 |  |-  ( ( F Fn A /\ Smo F ) -> Ord A ) | 
						
							| 5 | 2 3 4 | syl2anc |  |-  ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> Ord A ) | 
						
							| 6 |  | ordelord |  |-  ( ( Ord A /\ x e. A ) -> Ord x ) | 
						
							| 7 | 5 6 | sylancom |  |-  ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> Ord x ) | 
						
							| 8 |  | simpl3 |  |-  ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> Ord B ) | 
						
							| 9 |  | simpr |  |-  ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> x e. A ) | 
						
							| 10 |  | smogt |  |-  ( ( F Fn A /\ Smo F /\ x e. A ) -> x C_ ( F ` x ) ) | 
						
							| 11 | 2 3 9 10 | syl3anc |  |-  ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> x C_ ( F ` x ) ) | 
						
							| 12 |  | ffvelcdm |  |-  ( ( F : A --> B /\ x e. A ) -> ( F ` x ) e. B ) | 
						
							| 13 | 12 | 3ad2antl1 |  |-  ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> ( F ` x ) e. B ) | 
						
							| 14 |  | ordtr2 |  |-  ( ( Ord x /\ Ord B ) -> ( ( x C_ ( F ` x ) /\ ( F ` x ) e. B ) -> x e. B ) ) | 
						
							| 15 | 14 | imp |  |-  ( ( ( Ord x /\ Ord B ) /\ ( x C_ ( F ` x ) /\ ( F ` x ) e. B ) ) -> x e. B ) | 
						
							| 16 | 7 8 11 13 15 | syl22anc |  |-  ( ( ( F : A --> B /\ Smo F /\ Ord B ) /\ x e. A ) -> x e. B ) | 
						
							| 17 | 16 | ex |  |-  ( ( F : A --> B /\ Smo F /\ Ord B ) -> ( x e. A -> x e. B ) ) | 
						
							| 18 | 17 | ssrdv |  |-  ( ( F : A --> B /\ Smo F /\ Ord B ) -> A C_ B ) |