Metamath Proof Explorer


Theorem smodm2

Description: The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013)

Ref Expression
Assertion smodm2
|- ( ( F Fn A /\ Smo F ) -> Ord A )

Proof

Step Hyp Ref Expression
1 smodm
 |-  ( Smo F -> Ord dom F )
2 fndm
 |-  ( F Fn A -> dom F = A )
3 ordeq
 |-  ( dom F = A -> ( Ord dom F <-> Ord A ) )
4 2 3 syl
 |-  ( F Fn A -> ( Ord dom F <-> Ord A ) )
5 4 biimpa
 |-  ( ( F Fn A /\ Ord dom F ) -> Ord A )
6 1 5 sylan2
 |-  ( ( F Fn A /\ Smo F ) -> Ord A )