Description: If B is a strictly monotone ordinal function, and A is in the domain of B , then the value of the function at A is an ordinal. (Contributed by Andrew Salmon, 20-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | smofvon | |- ( ( Smo B /\ A e. dom B ) -> ( B ` A ) e. On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-smo | |- ( Smo B <-> ( B : dom B --> On /\ Ord dom B /\ A. x e. dom B A. y e. dom B ( x e. y -> ( B ` x ) e. ( B ` y ) ) ) ) |
|
2 | 1 | simp1bi | |- ( Smo B -> B : dom B --> On ) |
3 | 2 | ffvelrnda | |- ( ( Smo B /\ A e. dom B ) -> ( B ` A ) e. On ) |