| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id |  |-  ( x = C -> x = C ) | 
						
							| 2 |  | fveq2 |  |-  ( x = C -> ( F ` x ) = ( F ` C ) ) | 
						
							| 3 | 1 2 | sseq12d |  |-  ( x = C -> ( x C_ ( F ` x ) <-> C C_ ( F ` C ) ) ) | 
						
							| 4 | 3 | imbi2d |  |-  ( x = C -> ( ( ( F Fn A /\ Smo F ) -> x C_ ( F ` x ) ) <-> ( ( F Fn A /\ Smo F ) -> C C_ ( F ` C ) ) ) ) | 
						
							| 5 |  | smodm2 |  |-  ( ( F Fn A /\ Smo F ) -> Ord A ) | 
						
							| 6 | 5 | 3adant3 |  |-  ( ( F Fn A /\ Smo F /\ x e. A ) -> Ord A ) | 
						
							| 7 |  | simp3 |  |-  ( ( F Fn A /\ Smo F /\ x e. A ) -> x e. A ) | 
						
							| 8 |  | ordelord |  |-  ( ( Ord A /\ x e. A ) -> Ord x ) | 
						
							| 9 | 6 7 8 | syl2anc |  |-  ( ( F Fn A /\ Smo F /\ x e. A ) -> Ord x ) | 
						
							| 10 |  | vex |  |-  x e. _V | 
						
							| 11 | 10 | elon |  |-  ( x e. On <-> Ord x ) | 
						
							| 12 | 9 11 | sylibr |  |-  ( ( F Fn A /\ Smo F /\ x e. A ) -> x e. On ) | 
						
							| 13 |  | eleq1w |  |-  ( x = y -> ( x e. A <-> y e. A ) ) | 
						
							| 14 | 13 | 3anbi3d |  |-  ( x = y -> ( ( F Fn A /\ Smo F /\ x e. A ) <-> ( F Fn A /\ Smo F /\ y e. A ) ) ) | 
						
							| 15 |  | id |  |-  ( x = y -> x = y ) | 
						
							| 16 |  | fveq2 |  |-  ( x = y -> ( F ` x ) = ( F ` y ) ) | 
						
							| 17 | 15 16 | sseq12d |  |-  ( x = y -> ( x C_ ( F ` x ) <-> y C_ ( F ` y ) ) ) | 
						
							| 18 | 14 17 | imbi12d |  |-  ( x = y -> ( ( ( F Fn A /\ Smo F /\ x e. A ) -> x C_ ( F ` x ) ) <-> ( ( F Fn A /\ Smo F /\ y e. A ) -> y C_ ( F ` y ) ) ) ) | 
						
							| 19 |  | simpl1 |  |-  ( ( ( F Fn A /\ Smo F /\ x e. A ) /\ y e. x ) -> F Fn A ) | 
						
							| 20 |  | simpl2 |  |-  ( ( ( F Fn A /\ Smo F /\ x e. A ) /\ y e. x ) -> Smo F ) | 
						
							| 21 |  | ordtr1 |  |-  ( Ord A -> ( ( y e. x /\ x e. A ) -> y e. A ) ) | 
						
							| 22 | 21 | expcomd |  |-  ( Ord A -> ( x e. A -> ( y e. x -> y e. A ) ) ) | 
						
							| 23 | 6 7 22 | sylc |  |-  ( ( F Fn A /\ Smo F /\ x e. A ) -> ( y e. x -> y e. A ) ) | 
						
							| 24 | 23 | imp |  |-  ( ( ( F Fn A /\ Smo F /\ x e. A ) /\ y e. x ) -> y e. A ) | 
						
							| 25 |  | pm2.27 |  |-  ( ( F Fn A /\ Smo F /\ y e. A ) -> ( ( ( F Fn A /\ Smo F /\ y e. A ) -> y C_ ( F ` y ) ) -> y C_ ( F ` y ) ) ) | 
						
							| 26 | 19 20 24 25 | syl3anc |  |-  ( ( ( F Fn A /\ Smo F /\ x e. A ) /\ y e. x ) -> ( ( ( F Fn A /\ Smo F /\ y e. A ) -> y C_ ( F ` y ) ) -> y C_ ( F ` y ) ) ) | 
						
							| 27 | 26 | ralimdva |  |-  ( ( F Fn A /\ Smo F /\ x e. A ) -> ( A. y e. x ( ( F Fn A /\ Smo F /\ y e. A ) -> y C_ ( F ` y ) ) -> A. y e. x y C_ ( F ` y ) ) ) | 
						
							| 28 | 5 | 3adant3 |  |-  ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> Ord A ) | 
						
							| 29 |  | simp31 |  |-  ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> x e. A ) | 
						
							| 30 | 28 29 8 | syl2anc |  |-  ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> Ord x ) | 
						
							| 31 |  | simp32 |  |-  ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> y e. x ) | 
						
							| 32 |  | ordelord |  |-  ( ( Ord x /\ y e. x ) -> Ord y ) | 
						
							| 33 | 30 31 32 | syl2anc |  |-  ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> Ord y ) | 
						
							| 34 |  | smofvon2 |  |-  ( Smo F -> ( F ` x ) e. On ) | 
						
							| 35 | 34 | 3ad2ant2 |  |-  ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> ( F ` x ) e. On ) | 
						
							| 36 |  | eloni |  |-  ( ( F ` x ) e. On -> Ord ( F ` x ) ) | 
						
							| 37 | 35 36 | syl |  |-  ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> Ord ( F ` x ) ) | 
						
							| 38 |  | simp33 |  |-  ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> y C_ ( F ` y ) ) | 
						
							| 39 |  | smoel2 |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( x e. A /\ y e. x ) ) -> ( F ` y ) e. ( F ` x ) ) | 
						
							| 40 | 39 | 3adantr3 |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> ( F ` y ) e. ( F ` x ) ) | 
						
							| 41 | 40 | 3impa |  |-  ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> ( F ` y ) e. ( F ` x ) ) | 
						
							| 42 |  | ordtr2 |  |-  ( ( Ord y /\ Ord ( F ` x ) ) -> ( ( y C_ ( F ` y ) /\ ( F ` y ) e. ( F ` x ) ) -> y e. ( F ` x ) ) ) | 
						
							| 43 | 42 | imp |  |-  ( ( ( Ord y /\ Ord ( F ` x ) ) /\ ( y C_ ( F ` y ) /\ ( F ` y ) e. ( F ` x ) ) ) -> y e. ( F ` x ) ) | 
						
							| 44 | 33 37 38 41 43 | syl22anc |  |-  ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> y e. ( F ` x ) ) | 
						
							| 45 | 44 | 3expia |  |-  ( ( F Fn A /\ Smo F ) -> ( ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) -> y e. ( F ` x ) ) ) | 
						
							| 46 | 45 | 3expd |  |-  ( ( F Fn A /\ Smo F ) -> ( x e. A -> ( y e. x -> ( y C_ ( F ` y ) -> y e. ( F ` x ) ) ) ) ) | 
						
							| 47 | 46 | 3impia |  |-  ( ( F Fn A /\ Smo F /\ x e. A ) -> ( y e. x -> ( y C_ ( F ` y ) -> y e. ( F ` x ) ) ) ) | 
						
							| 48 | 47 | imp |  |-  ( ( ( F Fn A /\ Smo F /\ x e. A ) /\ y e. x ) -> ( y C_ ( F ` y ) -> y e. ( F ` x ) ) ) | 
						
							| 49 | 48 | ralimdva |  |-  ( ( F Fn A /\ Smo F /\ x e. A ) -> ( A. y e. x y C_ ( F ` y ) -> A. y e. x y e. ( F ` x ) ) ) | 
						
							| 50 |  | dfss3 |  |-  ( x C_ ( F ` x ) <-> A. y e. x y e. ( F ` x ) ) | 
						
							| 51 | 49 50 | imbitrrdi |  |-  ( ( F Fn A /\ Smo F /\ x e. A ) -> ( A. y e. x y C_ ( F ` y ) -> x C_ ( F ` x ) ) ) | 
						
							| 52 | 27 51 | syldc |  |-  ( A. y e. x ( ( F Fn A /\ Smo F /\ y e. A ) -> y C_ ( F ` y ) ) -> ( ( F Fn A /\ Smo F /\ x e. A ) -> x C_ ( F ` x ) ) ) | 
						
							| 53 | 52 | a1i |  |-  ( x e. On -> ( A. y e. x ( ( F Fn A /\ Smo F /\ y e. A ) -> y C_ ( F ` y ) ) -> ( ( F Fn A /\ Smo F /\ x e. A ) -> x C_ ( F ` x ) ) ) ) | 
						
							| 54 | 18 53 | tfis2 |  |-  ( x e. On -> ( ( F Fn A /\ Smo F /\ x e. A ) -> x C_ ( F ` x ) ) ) | 
						
							| 55 | 12 54 | mpcom |  |-  ( ( F Fn A /\ Smo F /\ x e. A ) -> x C_ ( F ` x ) ) | 
						
							| 56 | 55 | 3expia |  |-  ( ( F Fn A /\ Smo F ) -> ( x e. A -> x C_ ( F ` x ) ) ) | 
						
							| 57 | 56 | com12 |  |-  ( x e. A -> ( ( F Fn A /\ Smo F ) -> x C_ ( F ` x ) ) ) | 
						
							| 58 | 4 57 | vtoclga |  |-  ( C e. A -> ( ( F Fn A /\ Smo F ) -> C C_ ( F ` C ) ) ) | 
						
							| 59 | 58 | com12 |  |-  ( ( F Fn A /\ Smo F ) -> ( C e. A -> C C_ ( F ` C ) ) ) | 
						
							| 60 | 59 | 3impia |  |-  ( ( F Fn A /\ Smo F /\ C e. A ) -> C C_ ( F ` C ) ) |