Step |
Hyp |
Ref |
Expression |
1 |
|
smonoord.0 |
|- ( ph -> M e. ZZ ) |
2 |
|
smonoord.1 |
|- ( ph -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
3 |
|
smonoord.2 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) |
4 |
|
smonoord.3 |
|- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( F ` k ) < ( F ` ( k + 1 ) ) ) |
5 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` ( M + 1 ) ) -> N e. ( ( M + 1 ) ... N ) ) |
6 |
2 5
|
syl |
|- ( ph -> N e. ( ( M + 1 ) ... N ) ) |
7 |
|
eleq1 |
|- ( x = ( M + 1 ) -> ( x e. ( ( M + 1 ) ... N ) <-> ( M + 1 ) e. ( ( M + 1 ) ... N ) ) ) |
8 |
|
fveq2 |
|- ( x = ( M + 1 ) -> ( F ` x ) = ( F ` ( M + 1 ) ) ) |
9 |
8
|
breq2d |
|- ( x = ( M + 1 ) -> ( ( F ` M ) < ( F ` x ) <-> ( F ` M ) < ( F ` ( M + 1 ) ) ) ) |
10 |
7 9
|
imbi12d |
|- ( x = ( M + 1 ) -> ( ( x e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` x ) ) <-> ( ( M + 1 ) e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` ( M + 1 ) ) ) ) ) |
11 |
10
|
imbi2d |
|- ( x = ( M + 1 ) -> ( ( ph -> ( x e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` x ) ) ) <-> ( ph -> ( ( M + 1 ) e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` ( M + 1 ) ) ) ) ) ) |
12 |
|
eleq1 |
|- ( x = n -> ( x e. ( ( M + 1 ) ... N ) <-> n e. ( ( M + 1 ) ... N ) ) ) |
13 |
|
fveq2 |
|- ( x = n -> ( F ` x ) = ( F ` n ) ) |
14 |
13
|
breq2d |
|- ( x = n -> ( ( F ` M ) < ( F ` x ) <-> ( F ` M ) < ( F ` n ) ) ) |
15 |
12 14
|
imbi12d |
|- ( x = n -> ( ( x e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` x ) ) <-> ( n e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` n ) ) ) ) |
16 |
15
|
imbi2d |
|- ( x = n -> ( ( ph -> ( x e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` x ) ) ) <-> ( ph -> ( n e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` n ) ) ) ) ) |
17 |
|
eleq1 |
|- ( x = ( n + 1 ) -> ( x e. ( ( M + 1 ) ... N ) <-> ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) |
18 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( F ` x ) = ( F ` ( n + 1 ) ) ) |
19 |
18
|
breq2d |
|- ( x = ( n + 1 ) -> ( ( F ` M ) < ( F ` x ) <-> ( F ` M ) < ( F ` ( n + 1 ) ) ) ) |
20 |
17 19
|
imbi12d |
|- ( x = ( n + 1 ) -> ( ( x e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` x ) ) <-> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` ( n + 1 ) ) ) ) ) |
21 |
20
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ph -> ( x e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` x ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` ( n + 1 ) ) ) ) ) ) |
22 |
|
eleq1 |
|- ( x = N -> ( x e. ( ( M + 1 ) ... N ) <-> N e. ( ( M + 1 ) ... N ) ) ) |
23 |
|
fveq2 |
|- ( x = N -> ( F ` x ) = ( F ` N ) ) |
24 |
23
|
breq2d |
|- ( x = N -> ( ( F ` M ) < ( F ` x ) <-> ( F ` M ) < ( F ` N ) ) ) |
25 |
22 24
|
imbi12d |
|- ( x = N -> ( ( x e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` x ) ) <-> ( N e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` N ) ) ) ) |
26 |
25
|
imbi2d |
|- ( x = N -> ( ( ph -> ( x e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` x ) ) ) <-> ( ph -> ( N e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` N ) ) ) ) ) |
27 |
|
eluzp1m1 |
|- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
28 |
1 2 27
|
syl2anc |
|- ( ph -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
29 |
|
eluzfz1 |
|- ( ( N - 1 ) e. ( ZZ>= ` M ) -> M e. ( M ... ( N - 1 ) ) ) |
30 |
28 29
|
syl |
|- ( ph -> M e. ( M ... ( N - 1 ) ) ) |
31 |
4
|
ralrimiva |
|- ( ph -> A. k e. ( M ... ( N - 1 ) ) ( F ` k ) < ( F ` ( k + 1 ) ) ) |
32 |
|
fveq2 |
|- ( k = M -> ( F ` k ) = ( F ` M ) ) |
33 |
|
fvoveq1 |
|- ( k = M -> ( F ` ( k + 1 ) ) = ( F ` ( M + 1 ) ) ) |
34 |
32 33
|
breq12d |
|- ( k = M -> ( ( F ` k ) < ( F ` ( k + 1 ) ) <-> ( F ` M ) < ( F ` ( M + 1 ) ) ) ) |
35 |
34
|
rspcv |
|- ( M e. ( M ... ( N - 1 ) ) -> ( A. k e. ( M ... ( N - 1 ) ) ( F ` k ) < ( F ` ( k + 1 ) ) -> ( F ` M ) < ( F ` ( M + 1 ) ) ) ) |
36 |
30 31 35
|
sylc |
|- ( ph -> ( F ` M ) < ( F ` ( M + 1 ) ) ) |
37 |
36
|
a1d |
|- ( ph -> ( ( M + 1 ) e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` ( M + 1 ) ) ) ) |
38 |
37
|
a1i |
|- ( ( M + 1 ) e. ZZ -> ( ph -> ( ( M + 1 ) e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` ( M + 1 ) ) ) ) ) |
39 |
|
peano2fzr |
|- ( ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) -> n e. ( ( M + 1 ) ... N ) ) |
40 |
39
|
adantll |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( M + 1 ) ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) -> n e. ( ( M + 1 ) ... N ) ) |
41 |
40
|
ex |
|- ( ( ph /\ n e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> n e. ( ( M + 1 ) ... N ) ) ) |
42 |
41
|
imim1d |
|- ( ( ph /\ n e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( n e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` n ) ) -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` n ) ) ) ) |
43 |
|
peano2uzr |
|- ( ( M e. ZZ /\ n e. ( ZZ>= ` ( M + 1 ) ) ) -> n e. ( ZZ>= ` M ) ) |
44 |
43
|
ex |
|- ( M e. ZZ -> ( n e. ( ZZ>= ` ( M + 1 ) ) -> n e. ( ZZ>= ` M ) ) ) |
45 |
44 1
|
syl11 |
|- ( n e. ( ZZ>= ` ( M + 1 ) ) -> ( ph -> n e. ( ZZ>= ` M ) ) ) |
46 |
45
|
adantr |
|- ( ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) -> ( ph -> n e. ( ZZ>= ` M ) ) ) |
47 |
46
|
impcom |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> n e. ( ZZ>= ` M ) ) |
48 |
|
eluzelz |
|- ( n e. ( ZZ>= ` ( M + 1 ) ) -> n e. ZZ ) |
49 |
48
|
adantr |
|- ( ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) -> n e. ZZ ) |
50 |
49
|
adantl |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> n e. ZZ ) |
51 |
|
elfzuz3 |
|- ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> N e. ( ZZ>= ` ( n + 1 ) ) ) |
52 |
51
|
ad2antll |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> N e. ( ZZ>= ` ( n + 1 ) ) ) |
53 |
|
eluzp1m1 |
|- ( ( n e. ZZ /\ N e. ( ZZ>= ` ( n + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` n ) ) |
54 |
50 52 53
|
syl2anc |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( N - 1 ) e. ( ZZ>= ` n ) ) |
55 |
|
elfzuzb |
|- ( n e. ( M ... ( N - 1 ) ) <-> ( n e. ( ZZ>= ` M ) /\ ( N - 1 ) e. ( ZZ>= ` n ) ) ) |
56 |
47 54 55
|
sylanbrc |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> n e. ( M ... ( N - 1 ) ) ) |
57 |
31
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> A. k e. ( M ... ( N - 1 ) ) ( F ` k ) < ( F ` ( k + 1 ) ) ) |
58 |
|
fveq2 |
|- ( k = n -> ( F ` k ) = ( F ` n ) ) |
59 |
|
fvoveq1 |
|- ( k = n -> ( F ` ( k + 1 ) ) = ( F ` ( n + 1 ) ) ) |
60 |
58 59
|
breq12d |
|- ( k = n -> ( ( F ` k ) < ( F ` ( k + 1 ) ) <-> ( F ` n ) < ( F ` ( n + 1 ) ) ) ) |
61 |
60
|
rspcv |
|- ( n e. ( M ... ( N - 1 ) ) -> ( A. k e. ( M ... ( N - 1 ) ) ( F ` k ) < ( F ` ( k + 1 ) ) -> ( F ` n ) < ( F ` ( n + 1 ) ) ) ) |
62 |
56 57 61
|
sylc |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( F ` n ) < ( F ` ( n + 1 ) ) ) |
63 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
64 |
63
|
lep1d |
|- ( M e. ZZ -> M <_ ( M + 1 ) ) |
65 |
1 64
|
jccir |
|- ( ph -> ( M e. ZZ /\ M <_ ( M + 1 ) ) ) |
66 |
|
eluzuzle |
|- ( ( M e. ZZ /\ M <_ ( M + 1 ) ) -> ( N e. ( ZZ>= ` ( M + 1 ) ) -> N e. ( ZZ>= ` M ) ) ) |
67 |
65 2 66
|
sylc |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
68 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
69 |
67 68
|
syl |
|- ( ph -> M e. ( M ... N ) ) |
70 |
3
|
ralrimiva |
|- ( ph -> A. k e. ( M ... N ) ( F ` k ) e. RR ) |
71 |
32
|
eleq1d |
|- ( k = M -> ( ( F ` k ) e. RR <-> ( F ` M ) e. RR ) ) |
72 |
71
|
rspcv |
|- ( M e. ( M ... N ) -> ( A. k e. ( M ... N ) ( F ` k ) e. RR -> ( F ` M ) e. RR ) ) |
73 |
69 70 72
|
sylc |
|- ( ph -> ( F ` M ) e. RR ) |
74 |
73
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( F ` M ) e. RR ) |
75 |
|
fzp1ss |
|- ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
76 |
1 75
|
syl |
|- ( ph -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
77 |
76
|
sseld |
|- ( ph -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( n + 1 ) e. ( M ... N ) ) ) |
78 |
77
|
com12 |
|- ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( ph -> ( n + 1 ) e. ( M ... N ) ) ) |
79 |
78
|
adantl |
|- ( ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) -> ( ph -> ( n + 1 ) e. ( M ... N ) ) ) |
80 |
79
|
impcom |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( n + 1 ) e. ( M ... N ) ) |
81 |
|
peano2fzr |
|- ( ( n e. ( ZZ>= ` M ) /\ ( n + 1 ) e. ( M ... N ) ) -> n e. ( M ... N ) ) |
82 |
47 80 81
|
syl2anc |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> n e. ( M ... N ) ) |
83 |
70
|
adantr |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> A. k e. ( M ... N ) ( F ` k ) e. RR ) |
84 |
58
|
eleq1d |
|- ( k = n -> ( ( F ` k ) e. RR <-> ( F ` n ) e. RR ) ) |
85 |
84
|
rspcv |
|- ( n e. ( M ... N ) -> ( A. k e. ( M ... N ) ( F ` k ) e. RR -> ( F ` n ) e. RR ) ) |
86 |
82 83 85
|
sylc |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( F ` n ) e. RR ) |
87 |
|
fveq2 |
|- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
88 |
87
|
eleq1d |
|- ( k = ( n + 1 ) -> ( ( F ` k ) e. RR <-> ( F ` ( n + 1 ) ) e. RR ) ) |
89 |
88
|
rspcv |
|- ( ( n + 1 ) e. ( M ... N ) -> ( A. k e. ( M ... N ) ( F ` k ) e. RR -> ( F ` ( n + 1 ) ) e. RR ) ) |
90 |
80 83 89
|
sylc |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( F ` ( n + 1 ) ) e. RR ) |
91 |
|
lttr |
|- ( ( ( F ` M ) e. RR /\ ( F ` n ) e. RR /\ ( F ` ( n + 1 ) ) e. RR ) -> ( ( ( F ` M ) < ( F ` n ) /\ ( F ` n ) < ( F ` ( n + 1 ) ) ) -> ( F ` M ) < ( F ` ( n + 1 ) ) ) ) |
92 |
74 86 90 91
|
syl3anc |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( ( F ` M ) < ( F ` n ) /\ ( F ` n ) < ( F ` ( n + 1 ) ) ) -> ( F ` M ) < ( F ` ( n + 1 ) ) ) ) |
93 |
62 92
|
mpan2d |
|- ( ( ph /\ ( n e. ( ZZ>= ` ( M + 1 ) ) /\ ( n + 1 ) e. ( ( M + 1 ) ... N ) ) ) -> ( ( F ` M ) < ( F ` n ) -> ( F ` M ) < ( F ` ( n + 1 ) ) ) ) |
94 |
42 93
|
animpimp2impd |
|- ( n e. ( ZZ>= ` ( M + 1 ) ) -> ( ( ph -> ( n e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` n ) ) ) -> ( ph -> ( ( n + 1 ) e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` ( n + 1 ) ) ) ) ) ) |
95 |
11 16 21 26 38 94
|
uzind4 |
|- ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( ph -> ( N e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` N ) ) ) ) |
96 |
2 95
|
mpcom |
|- ( ph -> ( N e. ( ( M + 1 ) ... N ) -> ( F ` M ) < ( F ` N ) ) ) |
97 |
6 96
|
mpd |
|- ( ph -> ( F ` M ) < ( F ` N ) ) |