Step |
Hyp |
Ref |
Expression |
1 |
|
smodm2 |
|- ( ( F Fn A /\ Smo F ) -> Ord A ) |
2 |
|
simprl |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> C e. A ) |
3 |
|
ordelord |
|- ( ( Ord A /\ C e. A ) -> Ord C ) |
4 |
1 2 3
|
syl2an2r |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord C ) |
5 |
|
simprr |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> D e. A ) |
6 |
|
ordelord |
|- ( ( Ord A /\ D e. A ) -> Ord D ) |
7 |
1 5 6
|
syl2an2r |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord D ) |
8 |
|
ordtri3or |
|- ( ( Ord C /\ Ord D ) -> ( C e. D \/ C = D \/ D e. C ) ) |
9 |
|
simp3 |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C e. D ) -> C e. D ) |
10 |
|
smoel2 |
|- ( ( ( F Fn A /\ Smo F ) /\ ( D e. A /\ C e. D ) ) -> ( F ` C ) e. ( F ` D ) ) |
11 |
10
|
expr |
|- ( ( ( F Fn A /\ Smo F ) /\ D e. A ) -> ( C e. D -> ( F ` C ) e. ( F ` D ) ) ) |
12 |
11
|
adantrl |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( C e. D -> ( F ` C ) e. ( F ` D ) ) ) |
13 |
12
|
3impia |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C e. D ) -> ( F ` C ) e. ( F ` D ) ) |
14 |
9 13
|
2thd |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C e. D ) -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) |
15 |
14
|
3expia |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( C e. D -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) ) |
16 |
|
ordirr |
|- ( Ord C -> -. C e. C ) |
17 |
4 16
|
syl |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> -. C e. C ) |
18 |
17
|
3adant3 |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C = D ) -> -. C e. C ) |
19 |
|
simp3 |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C = D ) -> C = D ) |
20 |
18 19
|
neleqtrd |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C = D ) -> -. C e. D ) |
21 |
|
smofvon2 |
|- ( Smo F -> ( F ` C ) e. On ) |
22 |
21
|
ad2antlr |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( F ` C ) e. On ) |
23 |
|
eloni |
|- ( ( F ` C ) e. On -> Ord ( F ` C ) ) |
24 |
|
ordirr |
|- ( Ord ( F ` C ) -> -. ( F ` C ) e. ( F ` C ) ) |
25 |
22 23 24
|
3syl |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> -. ( F ` C ) e. ( F ` C ) ) |
26 |
25
|
3adant3 |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C = D ) -> -. ( F ` C ) e. ( F ` C ) ) |
27 |
19
|
fveq2d |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C = D ) -> ( F ` C ) = ( F ` D ) ) |
28 |
26 27
|
neleqtrd |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C = D ) -> -. ( F ` C ) e. ( F ` D ) ) |
29 |
20 28
|
2falsed |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ C = D ) -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) |
30 |
29
|
3expia |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( C = D -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) ) |
31 |
7
|
3adant3 |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> Ord D ) |
32 |
|
ordn2lp |
|- ( Ord D -> -. ( D e. C /\ C e. D ) ) |
33 |
31 32
|
syl |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> -. ( D e. C /\ C e. D ) ) |
34 |
|
pm3.2 |
|- ( D e. C -> ( C e. D -> ( D e. C /\ C e. D ) ) ) |
35 |
34
|
3ad2ant3 |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> ( C e. D -> ( D e. C /\ C e. D ) ) ) |
36 |
33 35
|
mtod |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> -. C e. D ) |
37 |
22 23
|
syl |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord ( F ` C ) ) |
38 |
37
|
3adant3 |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> Ord ( F ` C ) ) |
39 |
|
ordn2lp |
|- ( Ord ( F ` C ) -> -. ( ( F ` C ) e. ( F ` D ) /\ ( F ` D ) e. ( F ` C ) ) ) |
40 |
38 39
|
syl |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> -. ( ( F ` C ) e. ( F ` D ) /\ ( F ` D ) e. ( F ` C ) ) ) |
41 |
|
smoel2 |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. C ) ) -> ( F ` D ) e. ( F ` C ) ) |
42 |
41
|
adantrlr |
|- ( ( ( F Fn A /\ Smo F ) /\ ( ( C e. A /\ D e. A ) /\ D e. C ) ) -> ( F ` D ) e. ( F ` C ) ) |
43 |
42
|
3impb |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> ( F ` D ) e. ( F ` C ) ) |
44 |
|
pm3.21 |
|- ( ( F ` D ) e. ( F ` C ) -> ( ( F ` C ) e. ( F ` D ) -> ( ( F ` C ) e. ( F ` D ) /\ ( F ` D ) e. ( F ` C ) ) ) ) |
45 |
43 44
|
syl |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> ( ( F ` C ) e. ( F ` D ) -> ( ( F ` C ) e. ( F ` D ) /\ ( F ` D ) e. ( F ` C ) ) ) ) |
46 |
40 45
|
mtod |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> -. ( F ` C ) e. ( F ` D ) ) |
47 |
36 46
|
2falsed |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) /\ D e. C ) -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) |
48 |
47
|
3expia |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( D e. C -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) ) |
49 |
15 30 48
|
3jaod |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( ( C e. D \/ C = D \/ D e. C ) -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) ) |
50 |
8 49
|
syl5 |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( ( Ord C /\ Ord D ) -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) ) |
51 |
4 7 50
|
mp2and |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( C e. D <-> ( F ` C ) e. ( F ` D ) ) ) |