Step |
Hyp |
Ref |
Expression |
1 |
|
dmres |
|- dom ( A |` B ) = ( B i^i dom A ) |
2 |
|
incom |
|- ( B i^i dom A ) = ( dom A i^i B ) |
3 |
1 2
|
eqtri |
|- dom ( A |` B ) = ( dom A i^i B ) |
4 |
3
|
eleq2i |
|- ( C e. dom ( A |` B ) <-> C e. ( dom A i^i B ) ) |
5 |
|
smores |
|- ( ( Smo ( A |` B ) /\ C e. dom ( A |` B ) ) -> Smo ( ( A |` B ) |` C ) ) |
6 |
4 5
|
sylan2br |
|- ( ( Smo ( A |` B ) /\ C e. ( dom A i^i B ) ) -> Smo ( ( A |` B ) |` C ) ) |
7 |
6
|
3adant3 |
|- ( ( Smo ( A |` B ) /\ C e. ( dom A i^i B ) /\ Ord B ) -> Smo ( ( A |` B ) |` C ) ) |
8 |
|
elinel2 |
|- ( C e. ( dom A i^i B ) -> C e. B ) |
9 |
|
ordelss |
|- ( ( Ord B /\ C e. B ) -> C C_ B ) |
10 |
9
|
ancoms |
|- ( ( C e. B /\ Ord B ) -> C C_ B ) |
11 |
8 10
|
sylan |
|- ( ( C e. ( dom A i^i B ) /\ Ord B ) -> C C_ B ) |
12 |
11
|
3adant1 |
|- ( ( Smo ( A |` B ) /\ C e. ( dom A i^i B ) /\ Ord B ) -> C C_ B ) |
13 |
|
resabs1 |
|- ( C C_ B -> ( ( A |` B ) |` C ) = ( A |` C ) ) |
14 |
|
smoeq |
|- ( ( ( A |` B ) |` C ) = ( A |` C ) -> ( Smo ( ( A |` B ) |` C ) <-> Smo ( A |` C ) ) ) |
15 |
12 13 14
|
3syl |
|- ( ( Smo ( A |` B ) /\ C e. ( dom A i^i B ) /\ Ord B ) -> ( Smo ( ( A |` B ) |` C ) <-> Smo ( A |` C ) ) ) |
16 |
7 15
|
mpbid |
|- ( ( Smo ( A |` B ) /\ C e. ( dom A i^i B ) /\ Ord B ) -> Smo ( A |` C ) ) |