Step |
Hyp |
Ref |
Expression |
1 |
|
smoord |
|- ( ( ( F Fn A /\ Smo F ) /\ ( D e. A /\ C e. A ) ) -> ( D e. C <-> ( F ` D ) e. ( F ` C ) ) ) |
2 |
1
|
notbid |
|- ( ( ( F Fn A /\ Smo F ) /\ ( D e. A /\ C e. A ) ) -> ( -. D e. C <-> -. ( F ` D ) e. ( F ` C ) ) ) |
3 |
2
|
ancom2s |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( -. D e. C <-> -. ( F ` D ) e. ( F ` C ) ) ) |
4 |
|
smodm2 |
|- ( ( F Fn A /\ Smo F ) -> Ord A ) |
5 |
|
simprl |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> C e. A ) |
6 |
|
ordelord |
|- ( ( Ord A /\ C e. A ) -> Ord C ) |
7 |
4 5 6
|
syl2an2r |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord C ) |
8 |
|
simprr |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> D e. A ) |
9 |
|
ordelord |
|- ( ( Ord A /\ D e. A ) -> Ord D ) |
10 |
4 8 9
|
syl2an2r |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord D ) |
11 |
|
ordtri1 |
|- ( ( Ord C /\ Ord D ) -> ( C C_ D <-> -. D e. C ) ) |
12 |
7 10 11
|
syl2anc |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( C C_ D <-> -. D e. C ) ) |
13 |
|
simplr |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Smo F ) |
14 |
|
smofvon2 |
|- ( Smo F -> ( F ` C ) e. On ) |
15 |
|
eloni |
|- ( ( F ` C ) e. On -> Ord ( F ` C ) ) |
16 |
13 14 15
|
3syl |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord ( F ` C ) ) |
17 |
|
smofvon2 |
|- ( Smo F -> ( F ` D ) e. On ) |
18 |
|
eloni |
|- ( ( F ` D ) e. On -> Ord ( F ` D ) ) |
19 |
13 17 18
|
3syl |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord ( F ` D ) ) |
20 |
|
ordtri1 |
|- ( ( Ord ( F ` C ) /\ Ord ( F ` D ) ) -> ( ( F ` C ) C_ ( F ` D ) <-> -. ( F ` D ) e. ( F ` C ) ) ) |
21 |
16 19 20
|
syl2anc |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( ( F ` C ) C_ ( F ` D ) <-> -. ( F ` D ) e. ( F ` C ) ) ) |
22 |
3 12 21
|
3bitr4d |
|- ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( C C_ D <-> ( F ` C ) C_ ( F ` D ) ) ) |