| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smoord |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( D e. A /\ C e. A ) ) -> ( D e. C <-> ( F ` D ) e. ( F ` C ) ) ) | 
						
							| 2 | 1 | notbid |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( D e. A /\ C e. A ) ) -> ( -. D e. C <-> -. ( F ` D ) e. ( F ` C ) ) ) | 
						
							| 3 | 2 | ancom2s |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( -. D e. C <-> -. ( F ` D ) e. ( F ` C ) ) ) | 
						
							| 4 |  | smodm2 |  |-  ( ( F Fn A /\ Smo F ) -> Ord A ) | 
						
							| 5 |  | simprl |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> C e. A ) | 
						
							| 6 |  | ordelord |  |-  ( ( Ord A /\ C e. A ) -> Ord C ) | 
						
							| 7 | 4 5 6 | syl2an2r |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord C ) | 
						
							| 8 |  | simprr |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> D e. A ) | 
						
							| 9 |  | ordelord |  |-  ( ( Ord A /\ D e. A ) -> Ord D ) | 
						
							| 10 | 4 8 9 | syl2an2r |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord D ) | 
						
							| 11 |  | ordtri1 |  |-  ( ( Ord C /\ Ord D ) -> ( C C_ D <-> -. D e. C ) ) | 
						
							| 12 | 7 10 11 | syl2anc |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( C C_ D <-> -. D e. C ) ) | 
						
							| 13 |  | simplr |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Smo F ) | 
						
							| 14 |  | smofvon2 |  |-  ( Smo F -> ( F ` C ) e. On ) | 
						
							| 15 |  | eloni |  |-  ( ( F ` C ) e. On -> Ord ( F ` C ) ) | 
						
							| 16 | 13 14 15 | 3syl |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord ( F ` C ) ) | 
						
							| 17 |  | smofvon2 |  |-  ( Smo F -> ( F ` D ) e. On ) | 
						
							| 18 |  | eloni |  |-  ( ( F ` D ) e. On -> Ord ( F ` D ) ) | 
						
							| 19 | 13 17 18 | 3syl |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> Ord ( F ` D ) ) | 
						
							| 20 |  | ordtri1 |  |-  ( ( Ord ( F ` C ) /\ Ord ( F ` D ) ) -> ( ( F ` C ) C_ ( F ` D ) <-> -. ( F ` D ) e. ( F ` C ) ) ) | 
						
							| 21 | 16 19 20 | syl2anc |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( ( F ` C ) C_ ( F ` D ) <-> -. ( F ` D ) e. ( F ` C ) ) ) | 
						
							| 22 | 3 12 21 | 3bitr4d |  |-  ( ( ( F Fn A /\ Smo F ) /\ ( C e. A /\ D e. A ) ) -> ( C C_ D <-> ( F ` C ) C_ ( F ` D ) ) ) |