| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smuval.a |
|- ( ph -> A C_ NN0 ) |
| 2 |
|
smuval.b |
|- ( ph -> B C_ NN0 ) |
| 3 |
|
smuval.p |
|- P = seq 0 ( ( p e. ~P NN0 , m e. NN0 |-> ( p sadd { n e. NN0 | ( m e. A /\ ( n - m ) e. B ) } ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
| 4 |
|
smuval.n |
|- ( ph -> N e. NN0 ) |
| 5 |
|
smupvallem.a |
|- ( ph -> A C_ ( 0 ..^ N ) ) |
| 6 |
|
smupvallem.m |
|- ( ph -> M e. ( ZZ>= ` N ) ) |
| 7 |
1 2 3
|
smupf |
|- ( ph -> P : NN0 --> ~P NN0 ) |
| 8 |
|
eluznn0 |
|- ( ( N e. NN0 /\ M e. ( ZZ>= ` N ) ) -> M e. NN0 ) |
| 9 |
4 6 8
|
syl2anc |
|- ( ph -> M e. NN0 ) |
| 10 |
7 9
|
ffvelcdmd |
|- ( ph -> ( P ` M ) e. ~P NN0 ) |
| 11 |
10
|
elpwid |
|- ( ph -> ( P ` M ) C_ NN0 ) |
| 12 |
11
|
sseld |
|- ( ph -> ( k e. ( P ` M ) -> k e. NN0 ) ) |
| 13 |
1 2 3
|
smufval |
|- ( ph -> ( A smul B ) = { k e. NN0 | k e. ( P ` ( k + 1 ) ) } ) |
| 14 |
|
ssrab2 |
|- { k e. NN0 | k e. ( P ` ( k + 1 ) ) } C_ NN0 |
| 15 |
13 14
|
eqsstrdi |
|- ( ph -> ( A smul B ) C_ NN0 ) |
| 16 |
15
|
sseld |
|- ( ph -> ( k e. ( A smul B ) -> k e. NN0 ) ) |
| 17 |
1
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ N e. ( ZZ>= ` ( k + 1 ) ) ) -> A C_ NN0 ) |
| 18 |
2
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ N e. ( ZZ>= ` ( k + 1 ) ) ) -> B C_ NN0 ) |
| 19 |
|
simplr |
|- ( ( ( ph /\ k e. NN0 ) /\ N e. ( ZZ>= ` ( k + 1 ) ) ) -> k e. NN0 ) |
| 20 |
6
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> M e. ( ZZ>= ` N ) ) |
| 21 |
|
uztrn |
|- ( ( M e. ( ZZ>= ` N ) /\ N e. ( ZZ>= ` ( k + 1 ) ) ) -> M e. ( ZZ>= ` ( k + 1 ) ) ) |
| 22 |
20 21
|
sylan |
|- ( ( ( ph /\ k e. NN0 ) /\ N e. ( ZZ>= ` ( k + 1 ) ) ) -> M e. ( ZZ>= ` ( k + 1 ) ) ) |
| 23 |
17 18 3 19 22
|
smuval2 |
|- ( ( ( ph /\ k e. NN0 ) /\ N e. ( ZZ>= ` ( k + 1 ) ) ) -> ( k e. ( A smul B ) <-> k e. ( P ` M ) ) ) |
| 24 |
23
|
bicomd |
|- ( ( ( ph /\ k e. NN0 ) /\ N e. ( ZZ>= ` ( k + 1 ) ) ) -> ( k e. ( P ` M ) <-> k e. ( A smul B ) ) ) |
| 25 |
6
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> M e. ( ZZ>= ` N ) ) |
| 26 |
|
simpll |
|- ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> ph ) |
| 27 |
|
fveqeq2 |
|- ( x = N -> ( ( P ` x ) = ( P ` N ) <-> ( P ` N ) = ( P ` N ) ) ) |
| 28 |
27
|
imbi2d |
|- ( x = N -> ( ( ph -> ( P ` x ) = ( P ` N ) ) <-> ( ph -> ( P ` N ) = ( P ` N ) ) ) ) |
| 29 |
|
fveqeq2 |
|- ( x = k -> ( ( P ` x ) = ( P ` N ) <-> ( P ` k ) = ( P ` N ) ) ) |
| 30 |
29
|
imbi2d |
|- ( x = k -> ( ( ph -> ( P ` x ) = ( P ` N ) ) <-> ( ph -> ( P ` k ) = ( P ` N ) ) ) ) |
| 31 |
|
fveqeq2 |
|- ( x = ( k + 1 ) -> ( ( P ` x ) = ( P ` N ) <-> ( P ` ( k + 1 ) ) = ( P ` N ) ) ) |
| 32 |
31
|
imbi2d |
|- ( x = ( k + 1 ) -> ( ( ph -> ( P ` x ) = ( P ` N ) ) <-> ( ph -> ( P ` ( k + 1 ) ) = ( P ` N ) ) ) ) |
| 33 |
|
fveqeq2 |
|- ( x = M -> ( ( P ` x ) = ( P ` N ) <-> ( P ` M ) = ( P ` N ) ) ) |
| 34 |
33
|
imbi2d |
|- ( x = M -> ( ( ph -> ( P ` x ) = ( P ` N ) ) <-> ( ph -> ( P ` M ) = ( P ` N ) ) ) ) |
| 35 |
|
eqidd |
|- ( ph -> ( P ` N ) = ( P ` N ) ) |
| 36 |
1
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> A C_ NN0 ) |
| 37 |
2
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> B C_ NN0 ) |
| 38 |
|
eluznn0 |
|- ( ( N e. NN0 /\ k e. ( ZZ>= ` N ) ) -> k e. NN0 ) |
| 39 |
4 38
|
sylan |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> k e. NN0 ) |
| 40 |
36 37 3 39
|
smupp1 |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( P ` ( k + 1 ) ) = ( ( P ` k ) sadd { n e. NN0 | ( k e. A /\ ( n - k ) e. B ) } ) ) |
| 41 |
4
|
nn0red |
|- ( ph -> N e. RR ) |
| 42 |
41
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> N e. RR ) |
| 43 |
39
|
nn0red |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> k e. RR ) |
| 44 |
|
eluzle |
|- ( k e. ( ZZ>= ` N ) -> N <_ k ) |
| 45 |
44
|
adantl |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> N <_ k ) |
| 46 |
42 43 45
|
lensymd |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> -. k < N ) |
| 47 |
5
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> A C_ ( 0 ..^ N ) ) |
| 48 |
47
|
sseld |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( k e. A -> k e. ( 0 ..^ N ) ) ) |
| 49 |
|
elfzolt2 |
|- ( k e. ( 0 ..^ N ) -> k < N ) |
| 50 |
48 49
|
syl6 |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( k e. A -> k < N ) ) |
| 51 |
50
|
adantrd |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( k e. A /\ ( n - k ) e. B ) -> k < N ) ) |
| 52 |
46 51
|
mtod |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> -. ( k e. A /\ ( n - k ) e. B ) ) |
| 53 |
52
|
ralrimivw |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> A. n e. NN0 -. ( k e. A /\ ( n - k ) e. B ) ) |
| 54 |
|
rabeq0 |
|- ( { n e. NN0 | ( k e. A /\ ( n - k ) e. B ) } = (/) <-> A. n e. NN0 -. ( k e. A /\ ( n - k ) e. B ) ) |
| 55 |
53 54
|
sylibr |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> { n e. NN0 | ( k e. A /\ ( n - k ) e. B ) } = (/) ) |
| 56 |
55
|
oveq2d |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( P ` k ) sadd { n e. NN0 | ( k e. A /\ ( n - k ) e. B ) } ) = ( ( P ` k ) sadd (/) ) ) |
| 57 |
7
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> P : NN0 --> ~P NN0 ) |
| 58 |
57 39
|
ffvelcdmd |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( P ` k ) e. ~P NN0 ) |
| 59 |
58
|
elpwid |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( P ` k ) C_ NN0 ) |
| 60 |
|
sadid1 |
|- ( ( P ` k ) C_ NN0 -> ( ( P ` k ) sadd (/) ) = ( P ` k ) ) |
| 61 |
59 60
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( P ` k ) sadd (/) ) = ( P ` k ) ) |
| 62 |
40 56 61
|
3eqtrd |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( P ` ( k + 1 ) ) = ( P ` k ) ) |
| 63 |
62
|
eqeq1d |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( P ` ( k + 1 ) ) = ( P ` N ) <-> ( P ` k ) = ( P ` N ) ) ) |
| 64 |
63
|
biimprd |
|- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( P ` k ) = ( P ` N ) -> ( P ` ( k + 1 ) ) = ( P ` N ) ) ) |
| 65 |
64
|
expcom |
|- ( k e. ( ZZ>= ` N ) -> ( ph -> ( ( P ` k ) = ( P ` N ) -> ( P ` ( k + 1 ) ) = ( P ` N ) ) ) ) |
| 66 |
65
|
a2d |
|- ( k e. ( ZZ>= ` N ) -> ( ( ph -> ( P ` k ) = ( P ` N ) ) -> ( ph -> ( P ` ( k + 1 ) ) = ( P ` N ) ) ) ) |
| 67 |
28 30 32 34 35 66
|
uzind4i |
|- ( M e. ( ZZ>= ` N ) -> ( ph -> ( P ` M ) = ( P ` N ) ) ) |
| 68 |
25 26 67
|
sylc |
|- ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> ( P ` M ) = ( P ` N ) ) |
| 69 |
|
simpr |
|- ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> ( k + 1 ) e. ( ZZ>= ` N ) ) |
| 70 |
28 30 32 32 35 66
|
uzind4i |
|- ( ( k + 1 ) e. ( ZZ>= ` N ) -> ( ph -> ( P ` ( k + 1 ) ) = ( P ` N ) ) ) |
| 71 |
69 26 70
|
sylc |
|- ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> ( P ` ( k + 1 ) ) = ( P ` N ) ) |
| 72 |
68 71
|
eqtr4d |
|- ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> ( P ` M ) = ( P ` ( k + 1 ) ) ) |
| 73 |
72
|
eleq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> ( k e. ( P ` M ) <-> k e. ( P ` ( k + 1 ) ) ) ) |
| 74 |
1
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> A C_ NN0 ) |
| 75 |
2
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> B C_ NN0 ) |
| 76 |
|
simplr |
|- ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> k e. NN0 ) |
| 77 |
74 75 3 76
|
smuval |
|- ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> ( k e. ( A smul B ) <-> k e. ( P ` ( k + 1 ) ) ) ) |
| 78 |
73 77
|
bitr4d |
|- ( ( ( ph /\ k e. NN0 ) /\ ( k + 1 ) e. ( ZZ>= ` N ) ) -> ( k e. ( P ` M ) <-> k e. ( A smul B ) ) ) |
| 79 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
| 80 |
79
|
nn0zd |
|- ( ( ph /\ k e. NN0 ) -> k e. ZZ ) |
| 81 |
80
|
peano2zd |
|- ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. ZZ ) |
| 82 |
4
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 83 |
82
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> N e. ZZ ) |
| 84 |
|
uztric |
|- ( ( ( k + 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( k + 1 ) ) \/ ( k + 1 ) e. ( ZZ>= ` N ) ) ) |
| 85 |
81 83 84
|
syl2anc |
|- ( ( ph /\ k e. NN0 ) -> ( N e. ( ZZ>= ` ( k + 1 ) ) \/ ( k + 1 ) e. ( ZZ>= ` N ) ) ) |
| 86 |
24 78 85
|
mpjaodan |
|- ( ( ph /\ k e. NN0 ) -> ( k e. ( P ` M ) <-> k e. ( A smul B ) ) ) |
| 87 |
86
|
ex |
|- ( ph -> ( k e. NN0 -> ( k e. ( P ` M ) <-> k e. ( A smul B ) ) ) ) |
| 88 |
12 16 87
|
pm5.21ndd |
|- ( ph -> ( k e. ( P ` M ) <-> k e. ( A smul B ) ) ) |
| 89 |
88
|
eqrdv |
|- ( ph -> ( P ` M ) = ( A smul B ) ) |