Metamath Proof Explorer


Theorem sn-el

Description: A version of el with an inner existential quantifier on x , which avoids ax-7 and ax-8 . (Contributed by SN, 18-Sep-2023)

Ref Expression
Assertion sn-el
|- E. y E. x x e. y

Proof

Step Hyp Ref Expression
1 ax-pow
 |-  E. y A. x ( A. w ( w e. x -> w e. z ) -> x e. y )
2 ax6ev
 |-  E. x x = z
3 ax9v1
 |-  ( x = z -> ( w e. x -> w e. z ) )
4 3 alrimiv
 |-  ( x = z -> A. w ( w e. x -> w e. z ) )
5 2 4 eximii
 |-  E. x A. w ( w e. x -> w e. z )
6 exim
 |-  ( A. x ( A. w ( w e. x -> w e. z ) -> x e. y ) -> ( E. x A. w ( w e. x -> w e. z ) -> E. x x e. y ) )
7 5 6 mpi
 |-  ( A. x ( A. w ( w e. x -> w e. z ) -> x e. y ) -> E. x x e. y )
8 1 7 eximii
 |-  E. y E. x x e. y