Metamath Proof Explorer


Theorem sn-iotalemcor

Description: Corollary of sn-iotalem . Compare sb8iota . (Contributed by SN, 6-Nov-2024)

Ref Expression
Assertion sn-iotalemcor
|- ( iota x ph ) = ( iota y { x | ph } = { y } )

Proof

Step Hyp Ref Expression
1 sn-iotalem
 |-  { y | { x | ph } = { y } } = { z | { y | { x | ph } = { y } } = { z } }
2 1 unieqi
 |-  U. { y | { x | ph } = { y } } = U. { z | { y | { x | ph } = { y } } = { z } }
3 df-iota
 |-  ( iota x ph ) = U. { y | { x | ph } = { y } }
4 df-iota
 |-  ( iota y { x | ph } = { y } ) = U. { z | { y | { x | ph } = { y } } = { z } }
5 2 3 4 3eqtr4i
 |-  ( iota x ph ) = ( iota y { x | ph } = { y } )