Metamath Proof Explorer


Theorem sn-iotassuni

Description: iotassuni without ax-10 , ax-11 , ax-12 . (Contributed by SN, 6-Nov-2024)

Ref Expression
Assertion sn-iotassuni
|- ( iota x ph ) C_ U. { x | ph }

Proof

Step Hyp Ref Expression
1 sn-iotauni
 |-  ( E. y { x | ph } = { y } -> ( iota x ph ) = U. { x | ph } )
2 eqimss
 |-  ( ( iota x ph ) = U. { x | ph } -> ( iota x ph ) C_ U. { x | ph } )
3 1 2 syl
 |-  ( E. y { x | ph } = { y } -> ( iota x ph ) C_ U. { x | ph } )
4 sn-iotanul
 |-  ( -. E. y { x | ph } = { y } -> ( iota x ph ) = (/) )
5 0ss
 |-  (/) C_ U. { x | ph }
6 4 5 eqsstrdi
 |-  ( -. E. y { x | ph } = { y } -> ( iota x ph ) C_ U. { x | ph } )
7 3 6 pm2.61i
 |-  ( iota x ph ) C_ U. { x | ph }