Metamath Proof Explorer


Theorem sn-iotauni

Description: Version of iotauni using df-iota instead of dfiota2 . (Contributed by SN, 6-Nov-2024)

Ref Expression
Assertion sn-iotauni
|- ( E. y { x | ph } = { y } -> ( iota x ph ) = U. { x | ph } )

Proof

Step Hyp Ref Expression
1 sn-iotaval
 |-  ( { x | ph } = { y } -> ( iota x ph ) = y )
2 unieq
 |-  ( { x | ph } = { y } -> U. { x | ph } = U. { y } )
3 vex
 |-  y e. _V
4 3 unisn
 |-  U. { y } = y
5 2 4 eqtr2di
 |-  ( { x | ph } = { y } -> y = U. { x | ph } )
6 1 5 eqtrd
 |-  ( { x | ph } = { y } -> ( iota x ph ) = U. { x | ph } )
7 6 exlimiv
 |-  ( E. y { x | ph } = { y } -> ( iota x ph ) = U. { x | ph } )