Step |
Hyp |
Ref |
Expression |
1 |
|
df-iota |
|- ( iota x ph ) = U. { w | { x | ph } = { w } } |
2 |
|
eqeq1 |
|- ( { x | ph } = { y } -> ( { x | ph } = { w } <-> { y } = { w } ) ) |
3 |
|
sneqbg |
|- ( y e. _V -> ( { y } = { w } <-> y = w ) ) |
4 |
3
|
elv |
|- ( { y } = { w } <-> y = w ) |
5 |
|
equcom |
|- ( y = w <-> w = y ) |
6 |
4 5
|
bitri |
|- ( { y } = { w } <-> w = y ) |
7 |
2 6
|
bitrdi |
|- ( { x | ph } = { y } -> ( { x | ph } = { w } <-> w = y ) ) |
8 |
7
|
alrimiv |
|- ( { x | ph } = { y } -> A. w ( { x | ph } = { w } <-> w = y ) ) |
9 |
|
uniabio |
|- ( A. w ( { x | ph } = { w } <-> w = y ) -> U. { w | { x | ph } = { w } } = y ) |
10 |
8 9
|
syl |
|- ( { x | ph } = { y } -> U. { w | { x | ph } = { w } } = y ) |
11 |
1 10
|
eqtrid |
|- ( { x | ph } = { y } -> ( iota x ph ) = y ) |