Metamath Proof Explorer


Theorem sn-iotaval

Description: Version of iotaval using df-iota instead of dfiota2 . (Contributed by SN, 6-Nov-2024)

Ref Expression
Assertion sn-iotaval
|- ( { x | ph } = { y } -> ( iota x ph ) = y )

Proof

Step Hyp Ref Expression
1 df-iota
 |-  ( iota x ph ) = U. { w | { x | ph } = { w } }
2 eqeq1
 |-  ( { x | ph } = { y } -> ( { x | ph } = { w } <-> { y } = { w } ) )
3 sneqbg
 |-  ( y e. _V -> ( { y } = { w } <-> y = w ) )
4 3 elv
 |-  ( { y } = { w } <-> y = w )
5 equcom
 |-  ( y = w <-> w = y )
6 4 5 bitri
 |-  ( { y } = { w } <-> w = y )
7 2 6 bitrdi
 |-  ( { x | ph } = { y } -> ( { x | ph } = { w } <-> w = y ) )
8 7 alrimiv
 |-  ( { x | ph } = { y } -> A. w ( { x | ph } = { w } <-> w = y ) )
9 uniabio
 |-  ( A. w ( { x | ph } = { w } <-> w = y ) -> U. { w | { x | ph } = { w } } = y )
10 8 9 syl
 |-  ( { x | ph } = { y } -> U. { w | { x | ph } = { w } } = y )
11 1 10 eqtrid
 |-  ( { x | ph } = { y } -> ( iota x ph ) = y )