Description: The singleton of the empty set is a topology on the empty set. (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sn0topon | |- { (/) } e. ( TopOn ` (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 | |- ~P (/) = { (/) } |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | distopon | |- ( (/) e. _V -> ~P (/) e. ( TopOn ` (/) ) ) |
|
| 4 | 2 3 | ax-mp | |- ~P (/) e. ( TopOn ` (/) ) |
| 5 | 1 4 | eqeltrri | |- { (/) } e. ( TopOn ` (/) ) |