Description: A singleton is closed w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | sncldre | |- ( A e. RR -> { A } e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rehaus | |- ( topGen ` ran (,) ) e. Haus |
|
2 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
3 | 2 | sncld | |- ( ( ( topGen ` ran (,) ) e. Haus /\ A e. RR ) -> { A } e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
4 | 1 3 | mpan | |- ( A e. RR -> { A } e. ( Clsd ` ( topGen ` ran (,) ) ) ) |