| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							snclseqg.x | 
							 |-  X = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							snclseqg.j | 
							 |-  J = ( TopOpen ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							snclseqg.z | 
							 |-  .0. = ( 0g ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							snclseqg.r | 
							 |-  .~ = ( G ~QG S )  | 
						
						
							| 5 | 
							
								
							 | 
							snclseqg.s | 
							 |-  S = ( ( cls ` J ) ` { .0. } ) | 
						
						
							| 6 | 
							
								5
							 | 
							imaeq2i | 
							 |-  ( ( x e. X |-> ( A ( +g ` G ) x ) ) " S ) = ( ( x e. X |-> ( A ( +g ` G ) x ) ) " ( ( cls ` J ) ` { .0. } ) ) | 
						
						
							| 7 | 
							
								
							 | 
							tgpgrp | 
							 |-  ( G e. TopGrp -> G e. Grp )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> G e. Grp )  | 
						
						
							| 9 | 
							
								2 1
							 | 
							tgptopon | 
							 |-  ( G e. TopGrp -> J e. ( TopOn ` X ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> J e. ( TopOn ` X ) )  | 
						
						
							| 11 | 
							
								
							 | 
							topontop | 
							 |-  ( J e. ( TopOn ` X ) -> J e. Top )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							syl | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> J e. Top )  | 
						
						
							| 13 | 
							
								1 3
							 | 
							grpidcl | 
							 |-  ( G e. Grp -> .0. e. X )  | 
						
						
							| 14 | 
							
								8 13
							 | 
							syl | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> .0. e. X )  | 
						
						
							| 15 | 
							
								14
							 | 
							snssd | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> { .0. } C_ X ) | 
						
						
							| 16 | 
							
								
							 | 
							toponuni | 
							 |-  ( J e. ( TopOn ` X ) -> X = U. J )  | 
						
						
							| 17 | 
							
								10 16
							 | 
							syl | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> X = U. J )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							sseqtrd | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> { .0. } C_ U. J ) | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							 |-  U. J = U. J  | 
						
						
							| 20 | 
							
								19
							 | 
							clsss3 | 
							 |-  ( ( J e. Top /\ { .0. } C_ U. J ) -> ( ( cls ` J ) ` { .0. } ) C_ U. J ) | 
						
						
							| 21 | 
							
								12 18 20
							 | 
							syl2anc | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> ( ( cls ` J ) ` { .0. } ) C_ U. J ) | 
						
						
							| 22 | 
							
								21 17
							 | 
							sseqtrrd | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> ( ( cls ` J ) ` { .0. } ) C_ X ) | 
						
						
							| 23 | 
							
								5 22
							 | 
							eqsstrid | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> S C_ X )  | 
						
						
							| 24 | 
							
								
							 | 
							simpr | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> A e. X )  | 
						
						
							| 25 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` G ) = ( +g ` G )  | 
						
						
							| 26 | 
							
								1 4 25
							 | 
							eqglact | 
							 |-  ( ( G e. Grp /\ S C_ X /\ A e. X ) -> [ A ] .~ = ( ( x e. X |-> ( A ( +g ` G ) x ) ) " S ) )  | 
						
						
							| 27 | 
							
								8 23 24 26
							 | 
							syl3anc | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> [ A ] .~ = ( ( x e. X |-> ( A ( +g ` G ) x ) ) " S ) )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. X |-> ( A ( +g ` G ) x ) ) = ( x e. X |-> ( A ( +g ` G ) x ) )  | 
						
						
							| 29 | 
							
								28 1 25 2
							 | 
							tgplacthmeo | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> ( x e. X |-> ( A ( +g ` G ) x ) ) e. ( J Homeo J ) )  | 
						
						
							| 30 | 
							
								19
							 | 
							hmeocls | 
							 |-  ( ( ( x e. X |-> ( A ( +g ` G ) x ) ) e. ( J Homeo J ) /\ { .0. } C_ U. J ) -> ( ( cls ` J ) ` ( ( x e. X |-> ( A ( +g ` G ) x ) ) " { .0. } ) ) = ( ( x e. X |-> ( A ( +g ` G ) x ) ) " ( ( cls ` J ) ` { .0. } ) ) ) | 
						
						
							| 31 | 
							
								29 18 30
							 | 
							syl2anc | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> ( ( cls ` J ) ` ( ( x e. X |-> ( A ( +g ` G ) x ) ) " { .0. } ) ) = ( ( x e. X |-> ( A ( +g ` G ) x ) ) " ( ( cls ` J ) ` { .0. } ) ) ) | 
						
						
							| 32 | 
							
								6 27 31
							 | 
							3eqtr4a | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> [ A ] .~ = ( ( cls ` J ) ` ( ( x e. X |-> ( A ( +g ` G ) x ) ) " { .0. } ) ) ) | 
						
						
							| 33 | 
							
								
							 | 
							df-ima | 
							 |-  ( ( x e. X |-> ( A ( +g ` G ) x ) ) " { .0. } ) = ran ( ( x e. X |-> ( A ( +g ` G ) x ) ) |` { .0. } ) | 
						
						
							| 34 | 
							
								15
							 | 
							resmptd | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> ( ( x e. X |-> ( A ( +g ` G ) x ) ) |` { .0. } ) = ( x e. { .0. } |-> ( A ( +g ` G ) x ) ) ) | 
						
						
							| 35 | 
							
								34
							 | 
							rneqd | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> ran ( ( x e. X |-> ( A ( +g ` G ) x ) ) |` { .0. } ) = ran ( x e. { .0. } |-> ( A ( +g ` G ) x ) ) ) | 
						
						
							| 36 | 
							
								33 35
							 | 
							eqtrid | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> ( ( x e. X |-> ( A ( +g ` G ) x ) ) " { .0. } ) = ran ( x e. { .0. } |-> ( A ( +g ` G ) x ) ) ) | 
						
						
							| 37 | 
							
								3
							 | 
							fvexi | 
							 |-  .0. e. _V  | 
						
						
							| 38 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = .0. -> ( A ( +g ` G ) x ) = ( A ( +g ` G ) .0. ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							eqeq2d | 
							 |-  ( x = .0. -> ( y = ( A ( +g ` G ) x ) <-> y = ( A ( +g ` G ) .0. ) ) )  | 
						
						
							| 40 | 
							
								37 39
							 | 
							rexsn | 
							 |-  ( E. x e. { .0. } y = ( A ( +g ` G ) x ) <-> y = ( A ( +g ` G ) .0. ) ) | 
						
						
							| 41 | 
							
								1 25 3
							 | 
							grprid | 
							 |-  ( ( G e. Grp /\ A e. X ) -> ( A ( +g ` G ) .0. ) = A )  | 
						
						
							| 42 | 
							
								7 41
							 | 
							sylan | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> ( A ( +g ` G ) .0. ) = A )  | 
						
						
							| 43 | 
							
								42
							 | 
							eqeq2d | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> ( y = ( A ( +g ` G ) .0. ) <-> y = A ) )  | 
						
						
							| 44 | 
							
								40 43
							 | 
							bitrid | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> ( E. x e. { .0. } y = ( A ( +g ` G ) x ) <-> y = A ) ) | 
						
						
							| 45 | 
							
								44
							 | 
							abbidv | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> { y | E. x e. { .0. } y = ( A ( +g ` G ) x ) } = { y | y = A } ) | 
						
						
							| 46 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. { .0. } |-> ( A ( +g ` G ) x ) ) = ( x e. { .0. } |-> ( A ( +g ` G ) x ) ) | 
						
						
							| 47 | 
							
								46
							 | 
							rnmpt | 
							 |-  ran ( x e. { .0. } |-> ( A ( +g ` G ) x ) ) = { y | E. x e. { .0. } y = ( A ( +g ` G ) x ) } | 
						
						
							| 48 | 
							
								
							 | 
							df-sn | 
							 |-  { A } = { y | y = A } | 
						
						
							| 49 | 
							
								45 47 48
							 | 
							3eqtr4g | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> ran ( x e. { .0. } |-> ( A ( +g ` G ) x ) ) = { A } ) | 
						
						
							| 50 | 
							
								36 49
							 | 
							eqtrd | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> ( ( x e. X |-> ( A ( +g ` G ) x ) ) " { .0. } ) = { A } ) | 
						
						
							| 51 | 
							
								50
							 | 
							fveq2d | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> ( ( cls ` J ) ` ( ( x e. X |-> ( A ( +g ` G ) x ) ) " { .0. } ) ) = ( ( cls ` J ) ` { A } ) ) | 
						
						
							| 52 | 
							
								32 51
							 | 
							eqtrd | 
							 |-  ( ( G e. TopGrp /\ A e. X ) -> [ A ] .~ = ( ( cls ` J ) ` { A } ) ) |