Metamath Proof Explorer


Theorem sndisj

Description: Any collection of singletons is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Assertion sndisj
|- Disj_ x e. A { x }

Proof

Step Hyp Ref Expression
1 dfdisj2
 |-  ( Disj_ x e. A { x } <-> A. y E* x ( x e. A /\ y e. { x } ) )
2 moeq
 |-  E* x x = y
3 simpr
 |-  ( ( x e. A /\ y e. { x } ) -> y e. { x } )
4 velsn
 |-  ( y e. { x } <-> y = x )
5 3 4 sylib
 |-  ( ( x e. A /\ y e. { x } ) -> y = x )
6 5 equcomd
 |-  ( ( x e. A /\ y e. { x } ) -> x = y )
7 6 moimi
 |-  ( E* x x = y -> E* x ( x e. A /\ y e. { x } ) )
8 2 7 ax-mp
 |-  E* x ( x e. A /\ y e. { x } )
9 1 8 mpgbir
 |-  Disj_ x e. A { x }