Metamath Proof Explorer


Theorem snec

Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypothesis snec.1
|- A e. _V
Assertion snec
|- { [ A ] R } = ( { A } /. R )

Proof

Step Hyp Ref Expression
1 snec.1
 |-  A e. _V
2 eceq1
 |-  ( x = A -> [ x ] R = [ A ] R )
3 2 eqeq2d
 |-  ( x = A -> ( y = [ x ] R <-> y = [ A ] R ) )
4 1 3 rexsn
 |-  ( E. x e. { A } y = [ x ] R <-> y = [ A ] R )
5 4 abbii
 |-  { y | E. x e. { A } y = [ x ] R } = { y | y = [ A ] R }
6 df-qs
 |-  ( { A } /. R ) = { y | E. x e. { A } y = [ x ] R }
7 df-sn
 |-  { [ A ] R } = { y | y = [ A ] R }
8 5 6 7 3eqtr4ri
 |-  { [ A ] R } = ( { A } /. R )