Description: The singleton of an equivalence class. (Contributed by NM, 29-Jan-1999) (Revised by Mario Carneiro, 9-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | snec.1 | |- A e. _V |
|
Assertion | snec | |- { [ A ] R } = ( { A } /. R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snec.1 | |- A e. _V |
|
2 | eceq1 | |- ( x = A -> [ x ] R = [ A ] R ) |
|
3 | 2 | eqeq2d | |- ( x = A -> ( y = [ x ] R <-> y = [ A ] R ) ) |
4 | 1 3 | rexsn | |- ( E. x e. { A } y = [ x ] R <-> y = [ A ] R ) |
5 | 4 | abbii | |- { y | E. x e. { A } y = [ x ] R } = { y | y = [ A ] R } |
6 | df-qs | |- ( { A } /. R ) = { y | E. x e. { A } y = [ x ] R } |
|
7 | df-sn | |- { [ A ] R } = { y | y = [ A ] R } |
|
8 | 5 6 7 | 3eqtr4ri | |- { [ A ] R } = ( { A } /. R ) |