Description: A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | snelpw.ex | |- A e. _V |
|
| Assertion | snelpw | |- ( A e. B <-> { A } e. ~P B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snelpw.ex | |- A e. _V |
|
| 2 | snelpwg | |- ( A e. _V -> ( A e. B <-> { A } e. ~P B ) ) |
|
| 3 | 1 2 | ax-mp | |- ( A e. B <-> { A } e. ~P B ) |