Metamath Proof Explorer


Theorem snelpwg

Description: A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998) Put in closed form and avoid ax-nul . (Revised by BJ, 17-Jan-2025)

Ref Expression
Assertion snelpwg
|- ( A e. V -> ( A e. B <-> { A } e. ~P B ) )

Proof

Step Hyp Ref Expression
1 snssg
 |-  ( A e. V -> ( A e. B <-> { A } C_ B ) )
2 snexg
 |-  ( A e. V -> { A } e. _V )
3 elpwg
 |-  ( { A } e. _V -> ( { A } e. ~P B <-> { A } C_ B ) )
4 2 3 syl
 |-  ( A e. V -> ( { A } e. ~P B <-> { A } C_ B ) )
5 1 4 bitr4d
 |-  ( A e. V -> ( A e. B <-> { A } e. ~P B ) )