Description: Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sneqbg | |- ( A e. V -> ( { A } = { B } <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqrg | |- ( A e. V -> ( { A } = { B } -> A = B ) ) |
|
| 2 | sneq | |- ( A = B -> { A } = { B } ) |
|
| 3 | 1 2 | impbid1 | |- ( A e. V -> ( { A } = { B } <-> A = B ) ) |