Description: Equality deduction for singletons. (Contributed by NM, 22-Jan-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sneqd.1 | |- ( ph -> A = B ) |
|
| Assertion | sneqd | |- ( ph -> { A } = { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneqd.1 | |- ( ph -> A = B ) |
|
| 2 | sneq | |- ( A = B -> { A } = { B } ) |
|
| 3 | 1 2 | syl | |- ( ph -> { A } = { B } ) |