Metamath Proof Explorer


Theorem sneqi

Description: Equality inference for singletons. (Contributed by NM, 22-Jan-2004)

Ref Expression
Hypothesis sneqi.1
|- A = B
Assertion sneqi
|- { A } = { B }

Proof

Step Hyp Ref Expression
1 sneqi.1
 |-  A = B
2 sneq
 |-  ( A = B -> { A } = { B } )
3 1 2 ax-mp
 |-  { A } = { B }