Metamath Proof Explorer


Theorem sneqr

Description: If the singletons of two sets are equal, the two sets are equal. Part of Exercise 4 of TakeutiZaring p. 15. (Contributed by NM, 27-Aug-1993)

Ref Expression
Hypothesis sneqr.1
|- A e. _V
Assertion sneqr
|- ( { A } = { B } -> A = B )

Proof

Step Hyp Ref Expression
1 sneqr.1
 |-  A e. _V
2 sneqrg
 |-  ( A e. _V -> ( { A } = { B } -> A = B ) )
3 1 2 ax-mp
 |-  ( { A } = { B } -> A = B )